情态动词
模态试验
振动
叠加原理
模态分析
算法
模式(计算机接口)
工作模态分析
正常模式
多元统计
鉴定(生物学)
工程类
计算机科学
结构工程
数学
有限元法
数学分析
声学
机器学习
物理
化学
植物
生物
操作系统
高分子化学
作者
Li Tao,Rui Hou,Kangkang Zheng,Zhongyu Zhang,Bo Liu
标识
DOI:10.1016/j.engfailanal.2024.108499
摘要
This paper introduces a fully automated modal identification algorithm based on the Multivariate Variational Mode Decomposition (MVMD) of free vibration responses to determine structural modal parameters. Addressing the challenge of setting MVMD parameters, we introduce a fusion parameter combining power spectral cross-entropy with reconstruction error as an adaptive fitness function in the optimization algorithm, enabling optimal parameter selection. Then, modal frequencies, damping ratios, and shapes of structures can be extracted from autonomously decomposed Intrinsic Mode Functions by employing the principle of modal superposition and least squares fitting without manual parameter adjustments. Validated by a four-degree-of-freedom numerical model, the method demonstrated accurate, automatic modal parameter identification. The method was further applied to a subway tunnel structure model experiment. Comprehensive modal identification was conducted on tunnel structures under varying degrees of damage. The results validate the proposed method's effectiveness and reveal the damaged segment structure's multimodal parameter variation patterns and surrounding soil.
科研通智能强力驱动
Strongly Powered by AbleSci AI