计算机科学
频道(广播)
脑电图
培训(气象学)
人工智能
机器学习
计算机网络
精神科
医学
物理
气象学
作者
Chetna Gupta,Vikas Khullar
标识
DOI:10.1016/j.procs.2024.04.006
摘要
Major Depressive Disorder (MDD) is characterized by low mood, loss of interest and even suicidal ideation. Electroencephalogram based diagnosis of a variety of neurological conditions has been conducted in recent years using modern neurocomputing and deep learning approaches. Privacy is a high concern for medical data over distributed training scenarios. Hence, this paper aims to develop an EEG-based privacy-preserved system to identify MDD through the Federated Learning (FL) approach. In this study, training for 3-channel EEG-based MDD screening is introduced over FL using deep learning (DL) algorithms such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), Gated Recurrent Unit (GRU), and One Dimensional Convolutional Neural Network (1D-CNN). A privacy-preserving solution for MDD patients utilizing FL is advantageous because clinical data is sensitive and most people do not want to share their personal information. Hence, the analysis of the comparative results for multiple applicable strategies including Independent and Identically Disturbed (IID) data, non-IID data, and algorithms provide proof that FL can be used to train DL models. The MODMA dataset of 3-channel EEG with 26 MDD and 29 non-MDD individuals is used in this paper. Future study on MDD has several potential areas of use and these FL approaches can also be coupled with new technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI