Small Object Detection Method Based on Global Multi-level Perception and Dynamic Region Aggregation

计算机科学 计算机视觉 感知 人工智能 目标检测 对象(语法) 模式识别(心理学) 生物 神经科学
作者
Zhiqin Zhu,Renzhong Zheng,Guanqiu Qi,Shuang Li,Yuanyuan Li,Xinbo Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 10011-10022 被引量:7
标识
DOI:10.1109/tcsvt.2024.3402097
摘要

In the field of object detection, detecting small objects is an important and challenging task. However, most existing methods tend to focus on designing complex network structures, lack attention to global representation, and ignore redundant noise and dense distribution of small objects in complex networks. To address the above problems, this paper proposes a small object detection method based on global multi-level perception and dynamic region aggregation. The method achieves accurate detection by dynamically aggregating effective features within a region while fully perceiving the features. This method mainly consists of two modules: global multi-level perception module and dynamic region aggregation module. In the global multi-level perception module, self-attention is used to perceive the global region, and its linear transformation is mapped through a convolutional network to increase the local details of global perception, thereby obtaining more refined global information. The dynamic region aggregation module, devised with a sparse strategy in mind, selectively interacts with relevant features. This design allows aggregation of key features of individual instances, effectively mitigating noise interference. Consequently, this approach addresses the challenges associated with densely distributed targets and enhances the model's ability to discriminate on a fine-grained level. This proposed method was evaluated on two popular datasets. Experimental results show that this method outperforms state-of-the-art methods in small object detection tasks, demonstrating good performance and potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zing完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
ding应助GH采纳,获得10
2秒前
3秒前
KULI完成签到,获得积分10
3秒前
3秒前
小强强完成签到,获得积分10
3秒前
晏小敏完成签到,获得积分20
3秒前
11发布了新的文献求助10
4秒前
研友_8KX15L发布了新的文献求助10
5秒前
怦然心动完成签到,获得积分10
5秒前
6秒前
Hello应助飞翔的翅膀采纳,获得10
6秒前
SYLH应助Muggle采纳,获得10
6秒前
7秒前
8秒前
呼呼发布了新的文献求助10
8秒前
任性茗发布了新的文献求助10
8秒前
晏小敏发布了新的文献求助30
8秒前
8秒前
沉默的婴发布了新的文献求助10
8秒前
时光如梭发布了新的文献求助10
9秒前
852应助Narsic采纳,获得10
9秒前
10秒前
10秒前
科研通AI5应助直率心锁采纳,获得10
10秒前
11秒前
Clearday发布了新的文献求助10
12秒前
匆匆完成签到 ,获得积分10
12秒前
12秒前
玥越发布了新的文献求助10
12秒前
11完成签到,获得积分20
12秒前
13秒前
14秒前
灵巧代柔完成签到 ,获得积分10
14秒前
英俊的铭应助徐国状采纳,获得10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589569
求助须知:如何正确求助?哪些是违规求助? 3157863
关于积分的说明 9517794
捐赠科研通 2860923
什么是DOI,文献DOI怎么找? 1572096
邀请新用户注册赠送积分活动 737683
科研通“疑难数据库(出版商)”最低求助积分说明 722502