Speed Sensor-less Control of Induction Motor based on Super-helical Sliding Mold

感应电动机 模具 控制理论(社会学) 控制(管理) 控制工程 计算机科学 材料科学 工程类 人工智能 电气工程 复合材料 电压
作者
Xiaoyu An,Ren Chenglong,Leilei Guo,Lianhui Jia,Sun Zhihong,Yongxiang Mei,Haoyu Wang
出处
期刊:Recent Patents on Engineering [Bentham Science]
卷期号:19
标识
DOI:10.2174/0118722121298798240430051039
摘要

Background: With the continuous progress of technology and the development of shield enterprises, higher requirements are put forward for speed estimation and system stability in the sensorless control system of induction motors in shield machines. Method: In order to solve the problems of velocity observation error and sliding mode vibration of the induction motor velocity observation method based on sliding mold observer, an improved superhelical sliding mold observer is proposed by combining the currently known invention patents and the information based on the induction motor control. Result: The open square of the current error value is introduced into the continuous function of the sliding variable of the observer, and two different functions are used in the boundary layer to replace the sign function, which reduces the sliding mode noise and vibration problems, and the stability of the observer is proved by the Lyapunov stability theory. After that, a phase-locked loop alternative model-referenced adaptive algorithm is used as the rotational speed observation link, which solves the problem that the conventional model-referenced adaptive algorithm relies on the current-modeled magnetic chain observer. Conclusion: The improved super-helical sliding mode observer and phase-locked loop control method effectively reduce the system vibration and speed estimation error of the motor under different speeds and loading conditions, and the observed currents are smoother, which improves the stability of the system. Simulation and experimental results under different working conditions show the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sherry99发布了新的文献求助10
2秒前
2秒前
zjcbk985发布了新的文献求助10
3秒前
4秒前
4秒前
英语六级发布了新的文献求助10
6秒前
6秒前
慕青应助tutu采纳,获得10
7秒前
8秒前
suibianba应助大水采纳,获得10
9秒前
彭于晏应助Qiao采纳,获得10
9秒前
快乐滑板发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
11秒前
tan完成签到,获得积分10
13秒前
lulu发布了新的文献求助10
14秒前
Ha7发布了新的文献求助10
14秒前
14秒前
15秒前
kingwill举报啊嘞嘞求助涉嫌违规
15秒前
jacksin完成签到,获得积分10
16秒前
小王2127发布了新的文献求助10
16秒前
16秒前
蓝幻雷完成签到,获得积分10
16秒前
王旭智发布了新的文献求助10
17秒前
zjcbk985完成签到,获得积分10
17秒前
顺心蜜粉完成签到,获得积分10
17秒前
隐形曼青应助zxy采纳,获得10
17秒前
奋斗巧曼完成签到,获得积分10
17秒前
18秒前
下雨的颜色完成签到,获得积分10
18秒前
18秒前
的订单发布了新的文献求助10
18秒前
19秒前
顺心蜜粉发布了新的文献求助10
19秒前
高新瑶雯雯完成签到,获得积分10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3595481
求助须知:如何正确求助?哪些是违规求助? 3162483
关于积分的说明 9540495
捐赠科研通 2866093
什么是DOI,文献DOI怎么找? 1575295
邀请新用户注册赠送积分活动 740051
科研通“疑难数据库(出版商)”最低求助积分说明 723909