Revealing the Molecular Origin of Driving Forces and Thermodynamic Barriers for Li+ Ion Transport to Electrode-Electrolyte Interfaces

电解质 电极 化学物理 离子 离子运输机 材料科学 纳米技术 化学 物理化学 有机化学
作者
Abhishek Aggarwal,Kiarash Gordiz,Artem Baskin,Daniele Vivona,Joakim Halldin Stenlid,John W. Lawson,Jeffrey C. Grossman,Yang Shao‐Horn
标识
DOI:10.26434/chemrxiv-2024-hn926
摘要

Enhancing the power of lithium-ion batteries necessitates understanding the molecular processes governing Li+ ion transfer across the electrode-electrolyte interface. Here, employing enhanced sampling molecular dynamics simulations, we investigated the driving force and the thermodynamic barrier of Li+ ion adsorption onto Li0.5CoO2 (104) in LiClO4-, LiPF6-, and LiTFSI-based EC/EMC (3:7) electrolytes. The weaker cation-anion pairing in LiTFSI compared to LiClO4 was found to enhance the driving force for adsorption from -0.48 eV in LiClO4 to -1.26 eV in LiTFSI for an electrode-electrolyte interface with zero cation coverage, which was accompanied by an increased thermodynamic barrier from 0.33 eV in LiClO4 to 0.43 eV in LiTFSI at equilibrium surface coverage of Li+ ions. The hindered diffusivity of the solvent molecules in the electric double layer (EDL) at the electrode-electrolyte interface was the main contributor to the thermodynamic barrier for ion transport. The entropic component of the thermodynamic barrier was found to be more than one order of magnitude smaller for ClO4 compared to the TFSI-, which can be attributed to the presence of more ClO4 than TFSI- in EDL, causing more structural changes in EDL. The strong dependence of the entropic component of the thermodynamic barrier on the EDL structure enables its decoupling from the enthalpic components (e.g., ion-pairing that can be tuned independently) and thus can be used to control the kinetics of the interfacial transport. This work provides a fundamental understanding of the thermodynamic and kinetic parameters involved in Li+ ion adsorption, which is a crucial step in the performance of Li+ ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
共享精神应助xumengsuo采纳,获得10
1秒前
1秒前
hui发布了新的文献求助10
2秒前
夏青荷发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
wu发布了新的文献求助10
6秒前
6秒前
6秒前
Lucas应助地狱跳跳虎采纳,获得10
6秒前
7秒前
CrystalRmu完成签到,获得积分10
7秒前
8秒前
BIUBIU完成签到,获得积分10
8秒前
叁肆发布了新的文献求助10
9秒前
mokmok发布了新的文献求助10
9秒前
yy发布了新的文献求助30
10秒前
大炮台发布了新的文献求助10
10秒前
tansl1989发布了新的文献求助10
12秒前
12秒前
13秒前
范式完成签到,获得积分20
14秒前
14秒前
C2H5MgBr完成签到,获得积分10
15秒前
SciGPT应助loski采纳,获得10
16秒前
沉静的八宝粥完成签到,获得积分10
16秒前
人各有痣完成签到,获得积分10
16秒前
mokmok完成签到,获得积分10
17秒前
李爱国应助naonao采纳,获得10
18秒前
范式发布了新的文献求助10
19秒前
透明人完成签到,获得积分10
19秒前
tansl1989完成签到,获得积分10
20秒前
22秒前
LSX发布了新的文献求助10
22秒前
bkagyin应助火星上尔柳采纳,获得10
24秒前
24秒前
彭于晏应助华北第一深情采纳,获得10
25秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589