亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved neural network model based on dung beetle algorithm to predict CO2-brine interfacial tension

卤水 表面张力 人工神经网络 计算机科学 算法 生物系统 化学 人工智能 生物 热力学 物理 有机化学
作者
J. M. Li,Xiaoqiang Bian,Jing Chen,Yongbing Liu,Anthony D. Matthews
标识
DOI:10.1016/j.geoen.2024.212957
摘要

Geological carbon sequestration refers to the permanent storage of captured CO2 through injection into subterranean saline or rock formations. The CO2-brine interfacial tension (IFT) is a crucial factor that significantly impacts the process's efficacy. Since the experimental determination of the IFT of brine and CO2 is both time-consuming and expensive, and a variety of sources of error may occur, developing a well-prepared and dependable model of CO2-brine IFT is crucial. In this paper, an attempt has been made to investigate the dung beetle optimization algorithm based back propagation neural network (DBO-BPNN) model for predicting CO2-brine IFT. The model contains 2616 collected experimental datasets of CO2-brine/water interfacial tension, which can be divided into three regimes to be investigated: pure CO2-brine, pure CO2-water and impure CO2-water, and takes into account six independent variables: pressure, temperature, monovalent cation molality (Na+ and K+), bivalent cation molality (Ca2+ and Mg2+) in brine and the molar fractions of N2 and CH4 in the injected CO2 stream. The model's efficacy is assessed using a range of statistical and graphical techniques, and the model's validity is validated through the implementation of leverage methods, which identify anomalies across the entire dataset. Finally, the model is further compared with other intelligent models (PSO-BPNN, GWO-BPNN) in terms of runtime, storage space and accuracy. According to the results, the DBO-BPNN model provides the best levels of accuracy and precision, with determination coefficient (R2), root mean square error (RMSE) and average absolute relative deviation (AARD%) of 0.9743, 1.598 and 3.16, respectively, and the R2 is enhanced by 0.8% and 2.2% in comparison to GWO-BPNN and PSO-BPNN models. Additionally, the DBO-BPNN model exhibits the least execution time, a reduction of 6.4% and 13.1% in comparison to GWO-BPNN and PSO-BPNN models, respectively. In addition, the DBO-BPNN model occupies storage space in the middle of the GWO-BPNN and PSO-BPNN models. The findings establish a dependable and robust framework that enables precise forecasting of the CO2-brine IFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu砖家完成签到,获得积分20
17秒前
Cindy完成签到,获得积分20
17秒前
完美世界应助xlj采纳,获得10
20秒前
Cindy发布了新的文献求助20
21秒前
29秒前
29秒前
跳跃发布了新的文献求助10
33秒前
xlj发布了新的文献求助10
34秒前
35秒前
叙温雨发布了新的文献求助10
41秒前
杜鑫鹏完成签到,获得积分10
47秒前
49秒前
52秒前
58秒前
iman完成签到,获得积分10
1分钟前
深情安青应助Jie采纳,获得40
1分钟前
Yangyang完成签到,获得积分10
1分钟前
lele完成签到,获得积分10
1分钟前
CodeCraft应助叙温雨采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得100
1分钟前
1分钟前
1分钟前
Ferry完成签到 ,获得积分10
1分钟前
Lulu完成签到,获得积分10
1分钟前
pluvia完成签到,获得积分10
2分钟前
冷傲小刀刀完成签到,获得积分10
2分钟前
kenyant驳回了iNk应助
2分钟前
zmx完成签到 ,获得积分0
2分钟前
Kamalika完成签到,获得积分10
2分钟前
科研花完成签到 ,获得积分10
2分钟前
Panther完成签到,获得积分10
3分钟前
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
3分钟前
wrry发布了新的文献求助10
3分钟前
4分钟前
叙温雨发布了新的文献求助10
4分钟前
Lucas应助叙温雨采纳,获得10
5分钟前
Raunio完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292090
求助须知:如何正确求助?哪些是违规求助? 4442784
关于积分的说明 13830421
捐赠科研通 4326084
什么是DOI,文献DOI怎么找? 2374641
邀请新用户注册赠送积分活动 1369974
关于科研通互助平台的介绍 1334349