Improved neural network model based on dung beetle algorithm to predict CO2-brine interfacial tension

卤水 表面张力 人工神经网络 计算机科学 算法 生物系统 化学 人工智能 生物 热力学 物理 有机化学
作者
J. M. Li,Xiaoqiang Bian,Jing Chen,Yongbing Liu,Anthony D. Matthews
标识
DOI:10.1016/j.geoen.2024.212957
摘要

Geological carbon sequestration refers to the permanent storage of captured CO2 through injection into subterranean saline or rock formations. The CO2-brine interfacial tension (IFT) is a crucial factor that significantly impacts the process's efficacy. Since the experimental determination of the IFT of brine and CO2 is both time-consuming and expensive, and a variety of sources of error may occur, developing a well-prepared and dependable model of CO2-brine IFT is crucial. In this paper, an attempt has been made to investigate the dung beetle optimization algorithm based back propagation neural network (DBO-BPNN) model for predicting CO2-brine IFT. The model contains 2616 collected experimental datasets of CO2-brine/water interfacial tension, which can be divided into three regimes to be investigated: pure CO2-brine, pure CO2-water and impure CO2-water, and takes into account six independent variables: pressure, temperature, monovalent cation molality (Na+ and K+), bivalent cation molality (Ca2+ and Mg2+) in brine and the molar fractions of N2 and CH4 in the injected CO2 stream. The model's efficacy is assessed using a range of statistical and graphical techniques, and the model's validity is validated through the implementation of leverage methods, which identify anomalies across the entire dataset. Finally, the model is further compared with other intelligent models (PSO-BPNN, GWO-BPNN) in terms of runtime, storage space and accuracy. According to the results, the DBO-BPNN model provides the best levels of accuracy and precision, with determination coefficient (R2), root mean square error (RMSE) and average absolute relative deviation (AARD%) of 0.9743, 1.598 and 3.16, respectively, and the R2 is enhanced by 0.8% and 2.2% in comparison to GWO-BPNN and PSO-BPNN models. Additionally, the DBO-BPNN model exhibits the least execution time, a reduction of 6.4% and 13.1% in comparison to GWO-BPNN and PSO-BPNN models, respectively. In addition, the DBO-BPNN model occupies storage space in the middle of the GWO-BPNN and PSO-BPNN models. The findings establish a dependable and robust framework that enables precise forecasting of the CO2-brine IFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
misalia完成签到,获得积分10
1秒前
蛋宝完成签到,获得积分10
1秒前
科研小南完成签到 ,获得积分10
1秒前
SYLH应助开放磬采纳,获得10
3秒前
田様应助ee采纳,获得10
3秒前
研友_VZG64n发布了新的文献求助10
3秒前
4秒前
MY完成签到,获得积分20
5秒前
5秒前
尾气是菠萝口味完成签到,获得积分10
6秒前
6秒前
7秒前
李李李李李完成签到,获得积分10
7秒前
8秒前
锦鲤完成签到,获得积分10
8秒前
不奢完成签到 ,获得积分10
9秒前
阳小颖发布了新的文献求助10
10秒前
研友_851KE8发布了新的文献求助10
11秒前
骑着蜗牛追导弹应助Hao采纳,获得10
11秒前
11秒前
锦鲤发布了新的文献求助10
12秒前
阿月完成签到,获得积分10
12秒前
Orange应助帆帆采纳,获得10
13秒前
13秒前
15秒前
xxxllllll完成签到,获得积分10
15秒前
ED应助不再选择采纳,获得10
15秒前
15秒前
闲出屁国公主完成签到 ,获得积分10
18秒前
May关闭了May文献求助
18秒前
温婉的香氛完成签到 ,获得积分10
18秒前
852应助尾气是菠萝口味采纳,获得10
19秒前
救命稻草发布了新的文献求助10
20秒前
lancesix发布了新的文献求助10
20秒前
李多多完成签到,获得积分10
20秒前
20秒前
梁晞发布了新的文献求助10
20秒前
曼尼发布了新的文献求助10
20秒前
爱撞墙的猫完成签到,获得积分10
21秒前
海带拳大力士完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089