清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improved neural network model based on dung beetle algorithm to predict CO2-brine interfacial tension

卤水 表面张力 人工神经网络 计算机科学 算法 生物系统 化学 人工智能 生物 热力学 物理 有机化学
作者
J. M. Li,Xiaoqiang Bian,Jing Chen,Yongbing Liu,Anthony D. Matthews
标识
DOI:10.1016/j.geoen.2024.212957
摘要

Geological carbon sequestration refers to the permanent storage of captured CO2 through injection into subterranean saline or rock formations. The CO2-brine interfacial tension (IFT) is a crucial factor that significantly impacts the process's efficacy. Since the experimental determination of the IFT of brine and CO2 is both time-consuming and expensive, and a variety of sources of error may occur, developing a well-prepared and dependable model of CO2-brine IFT is crucial. In this paper, an attempt has been made to investigate the dung beetle optimization algorithm based back propagation neural network (DBO-BPNN) model for predicting CO2-brine IFT. The model contains 2616 collected experimental datasets of CO2-brine/water interfacial tension, which can be divided into three regimes to be investigated: pure CO2-brine, pure CO2-water and impure CO2-water, and takes into account six independent variables: pressure, temperature, monovalent cation molality (Na+ and K+), bivalent cation molality (Ca2+ and Mg2+) in brine and the molar fractions of N2 and CH4 in the injected CO2 stream. The model's efficacy is assessed using a range of statistical and graphical techniques, and the model's validity is validated through the implementation of leverage methods, which identify anomalies across the entire dataset. Finally, the model is further compared with other intelligent models (PSO-BPNN, GWO-BPNN) in terms of runtime, storage space and accuracy. According to the results, the DBO-BPNN model provides the best levels of accuracy and precision, with determination coefficient (R2), root mean square error (RMSE) and average absolute relative deviation (AARD%) of 0.9743, 1.598 and 3.16, respectively, and the R2 is enhanced by 0.8% and 2.2% in comparison to GWO-BPNN and PSO-BPNN models. Additionally, the DBO-BPNN model exhibits the least execution time, a reduction of 6.4% and 13.1% in comparison to GWO-BPNN and PSO-BPNN models, respectively. In addition, the DBO-BPNN model occupies storage space in the middle of the GWO-BPNN and PSO-BPNN models. The findings establish a dependable and robust framework that enables precise forecasting of the CO2-brine IFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
51秒前
yxuan发布了新的文献求助10
56秒前
小蘑菇应助yxuan采纳,获得10
1分钟前
mianmian0118完成签到 ,获得积分10
1分钟前
yipmyonphu完成签到,获得积分10
2分钟前
yindi1991完成签到 ,获得积分10
3分钟前
开心夏真完成签到,获得积分10
3分钟前
3分钟前
上官若男应助CC采纳,获得10
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
两个榴莲完成签到,获得积分0
6分钟前
量子星尘发布了新的文献求助10
6分钟前
7分钟前
7分钟前
CC发布了新的文献求助10
7分钟前
John完成签到 ,获得积分10
7分钟前
CC完成签到,获得积分10
7分钟前
vbnn完成签到 ,获得积分10
8分钟前
8分钟前
Alisha发布了新的文献求助10
8分钟前
不瞌睡完成签到,获得积分0
8分钟前
9分钟前
NiLou发布了新的文献求助10
9分钟前
平常以云完成签到 ,获得积分10
9分钟前
9分钟前
Tree_QD完成签到 ,获得积分10
9分钟前
科研通AI5应助NiLou采纳,获得10
9分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
9分钟前
Tales完成签到 ,获得积分10
10分钟前
激动的似狮完成签到,获得积分10
10分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
11分钟前
白华苍松发布了新的文献求助20
11分钟前
研友_VZG7GZ应助科研通管家采纳,获得30
11分钟前
大饼完成签到 ,获得积分10
12分钟前
锦诗完成签到,获得积分10
12分钟前
Alisha完成签到,获得积分10
12分钟前
心想柿橙发布了新的文献求助10
13分钟前
爆米花应助guimizhizhu11采纳,获得10
13分钟前
小梦完成签到,获得积分10
13分钟前
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111142
捐赠科研通 3997013
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740