Improved neural network model based on dung beetle algorithm to predict CO2-brine interfacial tension

卤水 表面张力 人工神经网络 计算机科学 算法 生物系统 化学 人工智能 生物 热力学 物理 有机化学
作者
J. M. Li,Xiaoqiang Bian,Jing Chen,Yongbing Liu,Anthony D. Matthews
标识
DOI:10.1016/j.geoen.2024.212957
摘要

Geological carbon sequestration refers to the permanent storage of captured CO2 through injection into subterranean saline or rock formations. The CO2-brine interfacial tension (IFT) is a crucial factor that significantly impacts the process's efficacy. Since the experimental determination of the IFT of brine and CO2 is both time-consuming and expensive, and a variety of sources of error may occur, developing a well-prepared and dependable model of CO2-brine IFT is crucial. In this paper, an attempt has been made to investigate the dung beetle optimization algorithm based back propagation neural network (DBO-BPNN) model for predicting CO2-brine IFT. The model contains 2616 collected experimental datasets of CO2-brine/water interfacial tension, which can be divided into three regimes to be investigated: pure CO2-brine, pure CO2-water and impure CO2-water, and takes into account six independent variables: pressure, temperature, monovalent cation molality (Na+ and K+), bivalent cation molality (Ca2+ and Mg2+) in brine and the molar fractions of N2 and CH4 in the injected CO2 stream. The model's efficacy is assessed using a range of statistical and graphical techniques, and the model's validity is validated through the implementation of leverage methods, which identify anomalies across the entire dataset. Finally, the model is further compared with other intelligent models (PSO-BPNN, GWO-BPNN) in terms of runtime, storage space and accuracy. According to the results, the DBO-BPNN model provides the best levels of accuracy and precision, with determination coefficient (R2), root mean square error (RMSE) and average absolute relative deviation (AARD%) of 0.9743, 1.598 and 3.16, respectively, and the R2 is enhanced by 0.8% and 2.2% in comparison to GWO-BPNN and PSO-BPNN models. Additionally, the DBO-BPNN model exhibits the least execution time, a reduction of 6.4% and 13.1% in comparison to GWO-BPNN and PSO-BPNN models, respectively. In addition, the DBO-BPNN model occupies storage space in the middle of the GWO-BPNN and PSO-BPNN models. The findings establish a dependable and robust framework that enables precise forecasting of the CO2-brine IFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wickedzz完成签到,获得积分10
刚刚
刚刚
鹅鹅鹅饿完成签到 ,获得积分10
1秒前
1秒前
爱听歌的冬萱完成签到,获得积分20
1秒前
无花果应助山奈采纳,获得10
1秒前
科研通AI2S应助诚心仙人掌采纳,获得10
1秒前
2秒前
程硕完成签到,获得积分10
2秒前
易烊干洗发布了新的文献求助10
2秒前
光亮醉蓝完成签到,获得积分10
3秒前
独爱小新完成签到,获得积分20
3秒前
feifei完成签到,获得积分10
3秒前
DUMMY4869完成签到,获得积分10
3秒前
3秒前
lily8675发布了新的文献求助30
3秒前
暴躁的黎云完成签到,获得积分10
3秒前
hgy发布了新的文献求助10
4秒前
4秒前
英姑应助sunshine采纳,获得10
5秒前
天天快乐应助别闹闹采纳,获得10
5秒前
顾矜应助duke采纳,获得10
5秒前
橘子s发布了新的文献求助10
5秒前
务实的凝天完成签到,获得积分10
5秒前
独爱小新发布了新的文献求助10
5秒前
向阳花发布了新的文献求助10
6秒前
尊敬的夏槐完成签到,获得积分10
6秒前
6秒前
6秒前
彭于晏应助周斌采纳,获得10
7秒前
DUMMY4869发布了新的文献求助20
7秒前
小蘑菇应助uu采纳,获得10
7秒前
niuniu完成签到,获得积分10
8秒前
9秒前
9秒前
ZhangY发布了新的文献求助10
9秒前
完美世界应助独爱小新采纳,获得10
9秒前
聪明小于发布了新的文献求助10
9秒前
9秒前
ym发布了新的文献求助10
10秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159243
求助须知:如何正确求助?哪些是违规求助? 2810372
关于积分的说明 7887509
捐赠科研通 2469200
什么是DOI,文献DOI怎么找? 1314702
科研通“疑难数据库(出版商)”最低求助积分说明 630697
版权声明 602012