亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved neural network model based on dung beetle algorithm to predict CO2-brine interfacial tension

卤水 表面张力 人工神经网络 计算机科学 算法 生物系统 化学 人工智能 生物 热力学 物理 有机化学
作者
J. M. Li,Xiaoqiang Bian,Jing Chen,Yongbing Liu,Anthony D. Matthews
标识
DOI:10.1016/j.geoen.2024.212957
摘要

Geological carbon sequestration refers to the permanent storage of captured CO2 through injection into subterranean saline or rock formations. The CO2-brine interfacial tension (IFT) is a crucial factor that significantly impacts the process's efficacy. Since the experimental determination of the IFT of brine and CO2 is both time-consuming and expensive, and a variety of sources of error may occur, developing a well-prepared and dependable model of CO2-brine IFT is crucial. In this paper, an attempt has been made to investigate the dung beetle optimization algorithm based back propagation neural network (DBO-BPNN) model for predicting CO2-brine IFT. The model contains 2616 collected experimental datasets of CO2-brine/water interfacial tension, which can be divided into three regimes to be investigated: pure CO2-brine, pure CO2-water and impure CO2-water, and takes into account six independent variables: pressure, temperature, monovalent cation molality (Na+ and K+), bivalent cation molality (Ca2+ and Mg2+) in brine and the molar fractions of N2 and CH4 in the injected CO2 stream. The model's efficacy is assessed using a range of statistical and graphical techniques, and the model's validity is validated through the implementation of leverage methods, which identify anomalies across the entire dataset. Finally, the model is further compared with other intelligent models (PSO-BPNN, GWO-BPNN) in terms of runtime, storage space and accuracy. According to the results, the DBO-BPNN model provides the best levels of accuracy and precision, with determination coefficient (R2), root mean square error (RMSE) and average absolute relative deviation (AARD%) of 0.9743, 1.598 and 3.16, respectively, and the R2 is enhanced by 0.8% and 2.2% in comparison to GWO-BPNN and PSO-BPNN models. Additionally, the DBO-BPNN model exhibits the least execution time, a reduction of 6.4% and 13.1% in comparison to GWO-BPNN and PSO-BPNN models, respectively. In addition, the DBO-BPNN model occupies storage space in the middle of the GWO-BPNN and PSO-BPNN models. The findings establish a dependable and robust framework that enables precise forecasting of the CO2-brine IFT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
45秒前
45秒前
cheers发布了新的文献求助10
49秒前
脑洞疼应助cheers采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
NexusExplorer应助李小猫采纳,获得10
1分钟前
李小猫完成签到,获得积分10
1分钟前
1分钟前
传奇3应助uo采纳,获得10
1分钟前
李小猫发布了新的文献求助10
1分钟前
1分钟前
uo发布了新的文献求助10
1分钟前
1分钟前
2分钟前
西瓜发布了新的文献求助30
2分钟前
壮观芸发布了新的文献求助10
2分钟前
西瓜完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
研友_VZG7GZ应助高高元柏采纳,获得10
3分钟前
斯文败类应助seven采纳,获得10
3分钟前
顾子墨完成签到,获得积分10
3分钟前
plz94完成签到 ,获得积分10
3分钟前
Benhnhk21完成签到,获得积分10
4分钟前
莫春莹完成签到 ,获得积分10
4分钟前
静静完成签到 ,获得积分10
4分钟前
KKKKKKKKKKKK发布了新的文献求助10
4分钟前
4分钟前
高高元柏发布了新的文献求助10
4分钟前
高高元柏完成签到,获得积分10
5分钟前
静_静完成签到 ,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706456
求助须知:如何正确求助?哪些是违规求助? 5173834
关于积分的说明 15246926
捐赠科研通 4859958
什么是DOI,文献DOI怎么找? 2608291
邀请新用户注册赠送积分活动 1559198
关于科研通互助平台的介绍 1516964