PM-LSMN: A Physical-Model-based Lightweight Self-attention Multiscale Net For Thin Cloud Removal

云计算 计算机科学 分布式计算 操作系统
作者
Bowen Zhao,Jianlin Zhou,Hongxiang Xu,Xiaoxing Feng,Yaxing Sun
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2024.3403674
摘要

Recently, deep learning based thin cloud removal methods have led to remarkable results. However, these deep learning models often have intricate structures, numerous parameters, and entail substantial training costs, rendering them impractical for widespread implementation in real-world applications. To overcome these challenges, a light-weight network for thin cloud removal, called PM-LSMN(a Physical-Model-based Lightweight Self-attention Multiscale convolution Network), was proposed in this letter. The LSMN module integrates spatial attention mechanism, channel attention mechanism, and multi-scale convolution net. This enhances the network's ability to capture the distribution of thin clouds in the cloudy images. Base on the physical model of clouds in optical remote sensing images, the network performs element addition operations between the thin cloud distribution images and cloudy images to generate the final cloud-free image. To ensure color consistency in the reconstructed image, a color loss is incorporated into the design of the loss function. On the RICE1 datasets, the proposed method achieves satisfactory results with 25.90 dB in PSNR, 0.93 in SSIM, 4.115 in SAM, and 0.400 in ERGAS. Additionally, the network accomplishes this with a more efficient parameter with 0.33M in Params and computational footprint with 96.2M in FLOPs. The code is available at https://github.com/xizimi/PM-LSMN.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Angel完成签到,获得积分10
刚刚
小青椒应助科研通管家采纳,获得30
刚刚
CodeCraft应助科研通管家采纳,获得50
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
是莉莉娅完成签到,获得积分10
刚刚
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
田様应助卫绯采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
懵懂的采梦应助婷婷采纳,获得10
1秒前
彭星星完成签到,获得积分10
1秒前
1秒前
1秒前
zxy完成签到,获得积分10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
cly发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得50
1秒前
李健应助科研通管家采纳,获得10
1秒前
Dream发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
聂落雁完成签到,获得积分10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
han完成签到,获得积分10
3秒前
3秒前
典雅的砖家完成签到,获得积分10
3秒前
3秒前
沉静傲霜完成签到,获得积分10
4秒前
小蘑菇应助话家采纳,获得10
4秒前
文静老三发布了新的文献求助10
4秒前
Jerry完成签到,获得积分10
4秒前
Stella应助jasonhuang采纳,获得30
5秒前
在水一方应助开放的书芹采纳,获得10
5秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313