PM-LSMN: A Physical-Model-based Lightweight Self-attention Multiscale Net For Thin Cloud Removal

云计算 计算机科学 分布式计算 操作系统
作者
Bowen Zhao,Jianlin Zhou,Hongxiang Xu,Xiaoxing Feng,Yaxing Sun
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2024.3403674
摘要

Recently, deep learning based thin cloud removal methods have led to remarkable results. However, these deep learning models often have intricate structures, numerous parameters, and entail substantial training costs, rendering them impractical for widespread implementation in real-world applications. To overcome these challenges, a light-weight network for thin cloud removal, called PM-LSMN(a Physical-Model-based Lightweight Self-attention Multiscale convolution Network), was proposed in this letter. The LSMN module integrates spatial attention mechanism, channel attention mechanism, and multi-scale convolution net. This enhances the network's ability to capture the distribution of thin clouds in the cloudy images. Base on the physical model of clouds in optical remote sensing images, the network performs element addition operations between the thin cloud distribution images and cloudy images to generate the final cloud-free image. To ensure color consistency in the reconstructed image, a color loss is incorporated into the design of the loss function. On the RICE1 datasets, the proposed method achieves satisfactory results with 25.90 dB in PSNR, 0.93 in SSIM, 4.115 in SAM, and 0.400 in ERGAS. Additionally, the network accomplishes this with a more efficient parameter with 0.33M in Params and computational footprint with 96.2M in FLOPs. The code is available at https://github.com/xizimi/PM-LSMN.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助zc98采纳,获得10
1秒前
shinn发布了新的文献求助10
2秒前
3秒前
xinjiasuki完成签到 ,获得积分10
4秒前
希望天下0贩的0应助zwying采纳,获得20
5秒前
文艺摩托完成签到,获得积分10
5秒前
wwww完成签到,获得积分20
7秒前
瓜瓜发布了新的文献求助10
7秒前
7秒前
yy完成签到 ,获得积分10
10秒前
Chris03Ray完成签到,获得积分10
11秒前
领导范儿应助体贴汽车采纳,获得10
12秒前
Duke完成签到,获得积分10
12秒前
张涛完成签到,获得积分10
14秒前
14秒前
yj发布了新的文献求助10
14秒前
15秒前
科研通AI2S应助leslie花花采纳,获得10
15秒前
浅沫juanjuan完成签到 ,获得积分10
15秒前
15秒前
零度寂寞3166完成签到,获得积分10
16秒前
ding应助Hhhhhhu采纳,获得10
16秒前
18秒前
18秒前
19秒前
瓜瓜完成签到,获得积分10
19秒前
21秒前
任性的香烟完成签到,获得积分10
21秒前
zhouxuefeng发布了新的文献求助10
21秒前
猫猫侠发布了新的文献求助10
21秒前
wang发布了新的文献求助10
22秒前
李爱国应助abuall采纳,获得30
22秒前
24秒前
女神金完成签到,获得积分10
24秒前
gugu发布了新的文献求助10
25秒前
体贴汽车发布了新的文献求助10
25秒前
Orange应助如意2023采纳,获得10
25秒前
25秒前
25秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967219
求助须知:如何正确求助?哪些是违规求助? 3512559
关于积分的说明 11164121
捐赠科研通 3247452
什么是DOI,文献DOI怎么找? 1793849
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804494