PM-LSMN: A Physical-Model-based Lightweight Self-attention Multiscale Net For Thin Cloud Removal

云计算 计算机科学 分布式计算 操作系统
作者
Bowen Zhao,Jianlin Zhou,Hongxiang Xu,Xiaoxing Feng,Yaxing Sun
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2024.3403674
摘要

Recently, deep learning based thin cloud removal methods have led to remarkable results. However, these deep learning models often have intricate structures, numerous parameters, and entail substantial training costs, rendering them impractical for widespread implementation in real-world applications. To overcome these challenges, a light-weight network for thin cloud removal, called PM-LSMN(a Physical-Model-based Lightweight Self-attention Multiscale convolution Network), was proposed in this letter. The LSMN module integrates spatial attention mechanism, channel attention mechanism, and multi-scale convolution net. This enhances the network's ability to capture the distribution of thin clouds in the cloudy images. Base on the physical model of clouds in optical remote sensing images, the network performs element addition operations between the thin cloud distribution images and cloudy images to generate the final cloud-free image. To ensure color consistency in the reconstructed image, a color loss is incorporated into the design of the loss function. On the RICE1 datasets, the proposed method achieves satisfactory results with 25.90 dB in PSNR, 0.93 in SSIM, 4.115 in SAM, and 0.400 in ERGAS. Additionally, the network accomplishes this with a more efficient parameter with 0.33M in Params and computational footprint with 96.2M in FLOPs. The code is available at https://github.com/xizimi/PM-LSMN.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alily完成签到,获得积分10
刚刚
1秒前
1秒前
可爱的函函应助斌城采纳,获得10
1秒前
1秒前
2秒前
靓丽幻梅发布了新的文献求助10
2秒前
dalin发布了新的文献求助100
2秒前
孟龙威发布了新的文献求助10
2秒前
隐形曼青应助虚幻的青槐采纳,获得10
2秒前
王羲之发布了新的文献求助10
2秒前
hyy发布了新的文献求助10
3秒前
科目三应助eee采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
SciGPT应助sola采纳,获得10
4秒前
科研通AI5应助沉静的丹烟采纳,获得10
4秒前
不爱看文献完成签到,获得积分10
4秒前
5秒前
5秒前
Ye发布了新的文献求助10
5秒前
浮游应助买了束花采纳,获得10
5秒前
高大抽屉完成签到,获得积分20
5秒前
只谈风月应助毕业采纳,获得10
5秒前
犹豫草莓完成签到,获得积分10
5秒前
lucky给lucky的求助进行了留言
6秒前
RXue发布了新的文献求助10
6秒前
啊哈嗯哈哈啊完成签到,获得积分10
6秒前
qianqianqian完成签到,获得积分10
6秒前
JamesPei应助无语的小熊猫采纳,获得10
6秒前
6秒前
科研通AI5应助021采纳,获得10
6秒前
6秒前
123456发布了新的文献求助10
7秒前
7秒前
7秒前
sasa发布了新的文献求助30
7秒前
三生三世缘关注了科研通微信公众号
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949