PM-LSMN: A Physical-Model-based Lightweight Self-attention Multiscale Net For Thin Cloud Removal

云计算 计算机科学 分布式计算 操作系统
作者
Bowen Zhao,Jianlin Zhou,Hongxiang Xu,Xiaoxing Feng,Yaxing Sun
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2024.3403674
摘要

Recently, deep learning based thin cloud removal methods have led to remarkable results. However, these deep learning models often have intricate structures, numerous parameters, and entail substantial training costs, rendering them impractical for widespread implementation in real-world applications. To overcome these challenges, a light-weight network for thin cloud removal, called PM-LSMN(a Physical-Model-based Lightweight Self-attention Multiscale convolution Network), was proposed in this letter. The LSMN module integrates spatial attention mechanism, channel attention mechanism, and multi-scale convolution net. This enhances the network's ability to capture the distribution of thin clouds in the cloudy images. Base on the physical model of clouds in optical remote sensing images, the network performs element addition operations between the thin cloud distribution images and cloudy images to generate the final cloud-free image. To ensure color consistency in the reconstructed image, a color loss is incorporated into the design of the loss function. On the RICE1 datasets, the proposed method achieves satisfactory results with 25.90 dB in PSNR, 0.93 in SSIM, 4.115 in SAM, and 0.400 in ERGAS. Additionally, the network accomplishes this with a more efficient parameter with 0.33M in Params and computational footprint with 96.2M in FLOPs. The code is available at https://github.com/xizimi/PM-LSMN.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
lightman完成签到,获得积分10
2秒前
aaa完成签到,获得积分10
3秒前
所所应助lianliyou采纳,获得10
3秒前
小马甲应助chencchen采纳,获得10
4秒前
4秒前
毛豆应助洛希极限采纳,获得10
5秒前
毛豆应助洛希极限采纳,获得10
5秒前
默顿的笔记本应助wuyiiyi采纳,获得10
5秒前
6秒前
a1441949575发布了新的文献求助10
8秒前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
8秒前
叫啥呢发布了新的文献求助10
9秒前
xgx984发布了新的文献求助10
10秒前
11秒前
牧紊完成签到,获得积分10
11秒前
Goodenough完成签到 ,获得积分10
11秒前
风中浩天发布了新的文献求助10
11秒前
八爪鱼完成签到 ,获得积分10
13秒前
丨歪比巴卜丨完成签到,获得积分10
14秒前
牧紊发布了新的文献求助10
15秒前
16秒前
shi123发布了新的文献求助10
19秒前
qianzheng应助Wd采纳,获得10
20秒前
21秒前
fighting完成签到 ,获得积分10
24秒前
李健应助明理思天采纳,获得30
24秒前
GeoEye应助研友_LkD29n采纳,获得10
24秒前
24秒前
小饼干1029完成签到,获得积分10
27秒前
28秒前
充电宝应助怡宝采纳,获得10
28秒前
研友_Z6Qrbn完成签到,获得积分10
29秒前
30秒前
xuanqing完成签到,获得积分10
30秒前
继往开来完成签到,获得积分10
30秒前
赘婿应助小饼干1029采纳,获得10
31秒前
思源应助u6e0c采纳,获得10
31秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211800
求助须知:如何正确求助?哪些是违规求助? 2860692
关于积分的说明 8125303
捐赠科研通 2526490
什么是DOI,文献DOI怎么找? 1360389
科研通“疑难数据库(出版商)”最低求助积分说明 643200
邀请新用户注册赠送积分活动 615288