Application of multi-modal temporal neural network based on enhanced sparrow optimization in lithium battery life prediction

情态动词 麻雀 计算机科学 锂(药物) 人工神经网络 电池(电) 人工智能 医学 生物 内科学 生态学 化学 物理 量子力学 功率(物理) 高分子化学
作者
Lei Zhu,Xiaofang Du,Yuhai Shi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-78211-x
摘要

This paper introduces the DeNet-Mamba-DC-SCSSA network, an advanced solution for predicting the Remaining Useful Life (RUL) of lithium-ion batteries, crucial for the safety and efficiency management of electric vehicles. Combining the robust Denoising Enhancement Network (DeNet), the Improved Sparrow Optimization Algorithm (SCSSA), the adept Mamba time-series model, and the proficient Dilated Convolution (DC), this model excels in precise noise handling and sophisticated feature extraction. DeNet diligently refines input data, mitigating noise interference, while Mamba skillfully captures sequential intricacies. DC, on the other hand, adeptly extracts features over varying time scales, ensuring meticulous RUL predictions.The model's efficacy was rigorously tested on NASA and CALCE datasets and was benchmarked against cutting-edge algorithms. Remarkably, it reduced average RE and RMSE by 48.59% and 21.45%, respectively, showcasing its superior performance and accuracy. Further evaluation on the CALCE dataset against the latest methods affirmed its leading predictive precision and stability.The model's robustness and practical applicability were further validated using real vehicle data from a new energy vehicle platform. In a challenging test, it accurately predicted the charging capacities corresponding to the mileage of four vehicles with minimal errors: 0.52 Ah, 1.03 Ah, 0.84 Ah, and 0.71 Ah. These results significantly surpassed those of other recent methods, highlighting the model's exceptional generalizability and potential for real-world applications in electric vehicle battery management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
Frank应助科研通管家采纳,获得10
刚刚
1351567822应助科研通管家采纳,获得50
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
yufanhui应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
yufanhui应助科研通管家采纳,获得10
1秒前
味道发布了新的文献求助10
1秒前
思源应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
jiajia993完成签到,获得积分10
1秒前
1秒前
Frank应助科研通管家采纳,获得10
1秒前
yufanhui应助科研通管家采纳,获得10
1秒前
无花果应助忠诚卫士采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得50
1秒前
Frank应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得30
1秒前
yufanhui应助科研通管家采纳,获得10
1秒前
Frank应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
Jasper应助LIU采纳,获得10
1秒前
1秒前
yufangwu应助科研通管家采纳,获得10
1秒前
yufanhui应助科研通管家采纳,获得10
1秒前
Frank应助科研通管家采纳,获得10
1秒前
1秒前
阿乐发布了新的文献求助10
2秒前
酷波er应助任梓宁采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531417
求助须知:如何正确求助?哪些是违规求助? 4620221
关于积分的说明 14572354
捐赠科研通 4559789
什么是DOI,文献DOI怎么找? 2498599
邀请新用户注册赠送积分活动 1478568
关于科研通互助平台的介绍 1449979