Application of multi-modal temporal neural network based on enhanced sparrow optimization in lithium battery life prediction

情态动词 麻雀 计算机科学 锂(药物) 人工神经网络 电池(电) 人工智能 医学 生物 内科学 生态学 化学 物理 功率(物理) 量子力学 高分子化学
作者
Lei Zhu,Xiaofang Du,Yuhai Shi
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-78211-x
摘要

This paper introduces the DeNet-Mamba-DC-SCSSA network, an advanced solution for predicting the Remaining Useful Life (RUL) of lithium-ion batteries, crucial for the safety and efficiency management of electric vehicles. Combining the robust Denoising Enhancement Network (DeNet), the Improved Sparrow Optimization Algorithm (SCSSA), the adept Mamba time-series model, and the proficient Dilated Convolution (DC), this model excels in precise noise handling and sophisticated feature extraction. DeNet diligently refines input data, mitigating noise interference, while Mamba skillfully captures sequential intricacies. DC, on the other hand, adeptly extracts features over varying time scales, ensuring meticulous RUL predictions.The model's efficacy was rigorously tested on NASA and CALCE datasets and was benchmarked against cutting-edge algorithms. Remarkably, it reduced average RE and RMSE by 48.59% and 21.45%, respectively, showcasing its superior performance and accuracy. Further evaluation on the CALCE dataset against the latest methods affirmed its leading predictive precision and stability.The model's robustness and practical applicability were further validated using real vehicle data from a new energy vehicle platform. In a challenging test, it accurately predicted the charging capacities corresponding to the mileage of four vehicles with minimal errors: 0.52 Ah, 1.03 Ah, 0.84 Ah, and 0.71 Ah. These results significantly surpassed those of other recent methods, highlighting the model's exceptional generalizability and potential for real-world applications in electric vehicle battery management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
577发布了新的文献求助10
刚刚
刚刚
卡卡西应助小杨采纳,获得20
1秒前
1秒前
2秒前
神勇从波发布了新的文献求助10
2秒前
harden9159发布了新的文献求助10
3秒前
平常映雁完成签到,获得积分10
4秒前
好运接收集成器完成签到,获得积分10
5秒前
lignin发布了新的文献求助10
5秒前
我是老大应助小羊123采纳,获得10
6秒前
zhaoyushi完成签到,获得积分10
6秒前
无花果应助libra0009采纳,获得10
6秒前
科研小白完成签到 ,获得积分10
7秒前
7秒前
brier0218发布了新的文献求助10
7秒前
7秒前
所所应助一口蛋黄苏采纳,获得10
8秒前
乘风破浪完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
财来完成签到 ,获得积分10
10秒前
所所应助刻苦的如霜采纳,获得10
11秒前
小番番er发布了新的文献求助10
12秒前
12秒前
13秒前
小羊123完成签到,获得积分20
13秒前
Yuki完成签到,获得积分10
13秒前
可爱的函函应助晨曦2011采纳,获得10
14秒前
烟花应助Qwe采纳,获得10
14秒前
Akim应助HongY采纳,获得10
14秒前
14秒前
15秒前
涟涵完成签到,获得积分20
15秒前
尽如完成签到,获得积分10
16秒前
16秒前
SciGPT应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954537
求助须知:如何正确求助?哪些是违规求助? 3500689
关于积分的说明 11100600
捐赠科研通 3231199
什么是DOI,文献DOI怎么找? 1786319
邀请新用户注册赠送积分活动 869946
科研通“疑难数据库(出版商)”最低求助积分说明 801731