A noise reduction method for rolling bearing based on improved Wiener filtering

峰度 信号(编程语言) 维纳滤波器 噪音(视频) 降噪 欧几里德距离 算法 计算机科学 模式识别(心理学) 数学 人工智能 统计 图像(数学) 程序设计语言
作者
Mingyue Yu,Jingwen Su,Yan Wang,Chuang Han
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:96 (2)
标识
DOI:10.1063/5.0217945
摘要

To accurately identify compound faults of bearings, a new noise reduction method is presented. With the new method, input signals and the order of Wiener filtering are adaptively determined according to feature mode decomposition (FMD), signal evaluation index, and Euclidean distance. First, to effectively separate frequency components from vibration signals, vibration signals are decomposed into modal components based on the FMD algorithm; second, kurtosis, root mean square, and variance, which are sensitive to fault information, are selected to build evaluation vectors. Third, the Euclidean distance between the evaluation vectors of the component signal and the original signal are calculated to represent the correlation among signals. By acquiring the two component signals that have the greatest and least correlation to original signals, an actual signal and a mixed signal required by Wiener filtering can be adaptively determined. Furthermore, the order of Wiener filtering is adaptively determined with maximum kurtosis as the criterion. Finally, fault features are extracted through the spectral analysis of signals after Wiener filtering and the type of compound faults is judged based on that. To demonstrate the accuracy and effectiveness of the proposed method, the proposed method is compared with the classical method. The result of comparison shows that the presented method can restrict the noise more effectively and determine the type of complex faults of bearings more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助mof采纳,获得10
1秒前
weng发布了新的文献求助10
1秒前
高贵梦秋完成签到,获得积分10
1秒前
脑洞疼应助123采纳,获得10
2秒前
jhx完成签到,获得积分10
2秒前
Charming123完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
rikii发布了新的文献求助10
6秒前
7秒前
周凡淇发布了新的文献求助10
7秒前
mof完成签到,获得积分10
9秒前
ding应助重要无招采纳,获得10
10秒前
11秒前
12秒前
经叫兽完成签到 ,获得积分10
12秒前
南冥完成签到 ,获得积分10
12秒前
zsy1234发布了新的文献求助10
13秒前
14秒前
朱成豪发布了新的文献求助10
16秒前
zjj115完成签到 ,获得积分10
17秒前
接accept发布了新的文献求助10
17秒前
健壮笑阳完成签到 ,获得积分10
17秒前
18秒前
19秒前
瓷儿发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
暴走火箭筒完成签到,获得积分10
21秒前
cc完成签到 ,获得积分10
22秒前
23秒前
23秒前
24秒前
呆呆不瓜完成签到,获得积分10
24秒前
25秒前
25秒前
斯文败类应助酥酥采纳,获得10
25秒前
Lric发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526155
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280871
捐赠科研通 2804159
什么是DOI,文献DOI怎么找? 1539302
邀请新用户注册赠送积分活动 716522
科研通“疑难数据库(出版商)”最低求助积分说明 709495