材料科学
胶体
锰
电解质
水溶液
锌
化学工程
无机化学
纳米颗粒
纳米技术
电极
冶金
化学
有机化学
物理化学
工程类
作者
Chuancong Zhou,Zhenming Xu,Qing Nan,Shouxin Zhang,Yating Gao,Fulong Li,Zaowen Zhao,Zhenyue Xing,Jing Li,Peng Rao,Zhenye Kang,Xiaodong Shi,Xinlong Tian
标识
DOI:10.1002/aenm.202405387
摘要
Abstract The rational design of inorganic colloid electrolytes enables the manipulation of the solvation structure of Zn 2+ ions and addresses zinc dendrite formation and manganese dissolution in aqueous zinc–manganese batteries. In this study, magnesium aluminosilicate (MAS) powder is used to fabricate a mineral‐based colloid electrolyte for Zn//α‐MnO 2 batteries. According to theoretical calculations, MAS has a stronger binding energy with Zn 2+ /Mn 2+ ions than with H 2 O molecules, suggesting the possibility of regulating the solvation structure of Zn 2+ /Mn 2+ ions in a MAS–colloid electrolyte. Based on the experimental results, a high ionic conductivity, wide operating voltage, low activation energy barrier, and stable pH environment is achieved in the MAS–colloid electrolyte. As expected, long‐term cyclic stability can be maintained for 3500 h at 0.2 mA cm −2 in Zn//Zn cells, and high capacities of 255.5 and 239.8 mAh g −1 are retained at 0.2 and 0.5 A g −1 after 100 cycles in Zn//α‐MnO 2 batteries, respectively. This performance is attributed to the spatial confinement effect of MAS on the active H 2 O molecules, which effectively reshapes the solvation structure of Zn 2+ ions, guaranteeing reversible zinc deposition, suppressing active manganese dissolution, and ensuring stable interfacial reactions. This work will drive the development of mineral‐based electrolytes in zinc‐based batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI