Acoustic sensing and autoencoder approach for abnormal gas detection in a spent nuclear fuel canister mock-up

自编码 核工程 环境科学 计算机科学 工程类 人工智能 人工神经网络
作者
Bozhou Zhuang,Bora Gencturk,Assad A. Oberai,Harisankar Ramaswamy,Ryan M. Meyer,Anton Sinkov,Morris S. Good
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241294042
摘要

Currently, spent nuclear fuel (SNF) from commercial nuclear power plants is stored in stainless-steel canisters for interim dry storage. To provide an inert environment, these canisters are backfilled with helium after vacuum drying. However, the helium environment may be contaminated during extended storage because of the material degradation. For example, the heavier fission gas xenon may be released from the fuel rods into the canister cavity should the fuel cladding be breached. Other gases such as air and water vapor may also be present as a result of leakage caused by chloride-induced stress corrosion cracking on the canister walls or by insufficient vacuum drying. Therefore, monitoring the gas composition can provide critical information about the health of SNF canisters. In this study, noninvasive testing was conducted on a 2/3-scaled SNF canister mock-up using acoustic sensing. Ultrasonic transducers were placed on the exterior surface of the canister to probe the gas composition. A dataset was collected by sealing the canister mock-up and introducing up to 1.53% argon or 1.29% air into the helium background gas. Three methods were used to detect changes in the gas composition: the time-of-flight (TOF) method, the differential method, and the autoencoder method. Results showed that the TOF method had sufficient resolution to detect abnormal gas concentrations of less than 1.0%. The differential method demonstrated a periodic in-phase and out-of-phase behavior between the benchmark (i.e., pure helium) and abnormal (i.e., with argon or air) state signals. The variational autoencoder (VAE) and the Wasserstein autoencoder (WAE) were trained on the benchmark data and were applied directly to the abnormal state data. It was found that both the unsupervised VAE and the WAE were able to distinguish the benchmark and abnormal states of the canister mock-up based on the reconstruction error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在险峰发布了新的文献求助10
1秒前
正直的沛凝完成签到,获得积分10
1秒前
2秒前
3秒前
海鸥完成签到,获得积分10
3秒前
蒋若风完成签到,获得积分10
3秒前
爆米花应助孙文杰采纳,获得10
4秒前
小艾完成签到,获得积分10
4秒前
明理萃完成签到 ,获得积分10
5秒前
苏黎世发布了新的文献求助10
5秒前
6秒前
乔安发布了新的文献求助10
6秒前
炫哥IRIS发布了新的文献求助10
6秒前
LaTeXer给积极行天的求助进行了留言
7秒前
ww发布了新的文献求助10
7秒前
Carlo完成签到,获得积分10
8秒前
蓝胖子完成签到 ,获得积分10
9秒前
10秒前
终生科研徒刑完成签到 ,获得积分10
10秒前
11秒前
ysc发布了新的文献求助20
13秒前
14秒前
LKX完成签到 ,获得积分10
14秒前
纯真的诗兰完成签到,获得积分10
15秒前
自然函完成签到 ,获得积分10
15秒前
等一个晴天完成签到,获得积分10
16秒前
as发布了新的文献求助100
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
个性元枫应助科研通管家采纳,获得10
16秒前
kingwill应助科研通管家采纳,获得20
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
16秒前
慕青应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
17秒前
海东来应助科研通管家采纳,获得30
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048