化学
锕系元素
过渡金属
星团(航天器)
双键
粘结长度
立体化学
物理化学
结晶学
无机化学
晶体结构
有机化学
计算机科学
催化作用
程序设计语言
作者
Zhengkai Cao,Xiaojuan Yu,Yang‐Rong Yao,Jochen Autschbach,Ning Chen
摘要
A thorium–carbon double bond that corresponds to the sum of theoretical covalent double bond radii has long been sought after in the study of actinide-ligand multiple bonding as a synthetic target. However, the stabilization of this chemical bond remains a great challenge to date, in part because of a relatively poor energetic matching between 5f-/6d- orbitals of thorium and the 2s-/2p- frontier orbitals of carbon. Herein, we report the successful synthesis of a thorium–carbon double bond in a carbon-bridged actinide-transition metal cluster, i.e., [Th═C═Ti], encapsulated inside a fullerene cage of C82. ThCTi@Cs(6)-C82 was successfully synthesized by a modified arc discharging method and characterized by mass spectrometry, single-crystal X-ray crystallography, various spectroscopy, and theoretical calculations. X-ray crystallographic analysis reveals a bent μ2-bridged carbide cluster with a Th–C distance of 2.123(18) Å, which is the shortest reported to date in an isolable compound and is comparable to the sum of the covalent Th═C double bond radii (2.10 Å). In addition, Th═C═Ti takes an unexpected nonlinear configuration with a bond angle of 133.0(10)°. The combined experimental and theoretical investigation further revealed the bonding nature of Th═C, which is polarized toward the bridged carbon but has a notably higher covalency than the Th–C bonds reported previously for organometallic compounds. Moreover, pronounced cage-to-metal donation appears to be stabilizing the encapsulated Th═C═Ti cluster. This work offers a deeper understanding of the bonding behavior of thorium and features the unique ability of fullerene cages to stabilize bonding motifs containing different types of metal–ligand multiple bonds.
科研通智能强力驱动
Strongly Powered by AbleSci AI