The growing appreciation of native state conformational fluctuations mediating protein function calls for critical reevaluation of protein evolution and adaptation. If proteins are ensembles, does nature select solely for ground state structure, or are conformational equilibria between functional states also conserved? If so, what is the mechanism and how can it be measured? Addressing these fundamental questions, we review our investigation into the role of local unfolding fluctuations in the native state ensembles of proteins. We describe the functional importance of these ubiquitous fluctuations, as revealed through studies of adenylate kinase. We then summarize elucidation of thermodynamic organizing principles, which culminate in a quantitative probe for evolutionary conservation of protein energetics. Finally, we show that these principles are predictive of sequence compatibility for multiple folds, providing a unique thermodynamic perspective on metamorphic proteins. These research areas demonstrate that the locally unfolded ensemble is an emerging, important mechanism of protein evolution.