清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting Chronic Critical Illness in Bone Trauma Patients: An AI-Based Approach for ICU Healthcare Providers

逻辑回归 医学 队列 前瞻性队列研究 急诊医学 重症监护 医疗保健 人口 队列研究 危重病 机器学习 内科学 重症监护医学 病危 计算机科学 经济 经济增长 环境卫生
作者
Shengjie Wang,Tao Liu,Ze Long,Yong Qin,Baisheng Sun,Zhencan Han,Xianlong Zhang,Li Li,Mingxing Lei
出处
期刊:Shock [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/shk.0000000000002549
摘要

Abstract BACKGROUND Chronic critical illness (CCI) is a serious condition characterized by a prolonged course of illness, resulting in elevated morbidity and mortality. CCI presents significant challenges for healthcare providers in intensive care units (ICUs), particularly among patients with bone trauma. Accurate prediction of CCI in this patient population is essential for effective management and intervention. This study aims to develop a web-based artificial intelligence (AI) application designed to predict CCI in ICU patients suffering from bone trauma. METHODS A cohort of 1049 patients were included in the study, with 775 patients from the Medical Information Mart for Intensive Care III (MIMIC-III) database and 274 patients from two tertiary hospitals. Five machine learning techniques and logistic regression were employed to develop the models, using 80% of the MIMIC-III cohort. The models’ internal effectiveness was evaluated using the remaining 20% of the cohort, and external validation was performed on the 274 prospective patients. Eleven evaluation metrics were used to develop a scoring system for comprehensive performance evaluation. RESULTS Among all the models evaluated, the eXGBoosting Machine (eXGBM) model demonstrated the highest performance in internal validation, with an area under the curve (AUC) value of 0.979 (95%CI: 0.970-0.991). It outperformed the Random Forest (RF) model, which had an AUC of 0.957 (95%CI: 0.941-0.967), and the Support Vector Machine (SVM) model, which achieved an AUC of 0.911 (95%CI: 0.878-0.928). The Logistic Regression (LR) model had a relatively lower AUC of 0.753 (95%CI: 0.714-0.793). In terms of various evaluation metrics, including accuracy (0.925), precision (0.906), recall (0.947), specificity (0.902), F1 score (0.926), Brier score (0.056), and Log loss (0.197), the eXGBM model consistently outperformed the other models. Additionally, based on the scoring system, the eXGBM model achieved the highest prediction score of 60, followed by the RF model with a score of 52 and the K-Nearest Neighbor (KNN) model with a score of 39. External validation of the eXGBM model resulted in an AUC of 0.887 (95%CI: 0.863-0.917), confirming its robust performance and generalizability. A user-friendly web-based AI application based on the eXGBM model was successfully developed and was freely accessible at the Internet. CONCLUSIONS The development of a web-based AI application utilizing the eXGBM model demonstrates a promising advancement in the prediction of CCI among ICU patients. With favorable performance in both internal and external validation, the AI application not only achieved high accuracy and reliability but also provided a user-friendly tool for clinicians. This application has the potential to enhance patient management and care by facilitating timely interventions for at-risk patients. Future research should focus on further refining the model and exploring its integration into clinical practice to improve outcomes in this patient population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赛韓吧完成签到 ,获得积分10
4秒前
baobeikk完成签到 ,获得积分10
5秒前
科研通AI2S应助水兰色采纳,获得30
6秒前
elisa828完成签到,获得积分10
21秒前
wanci应助科研通管家采纳,获得10
30秒前
古炮完成签到 ,获得积分10
40秒前
1分钟前
dahai发布了新的文献求助10
1分钟前
dahai完成签到,获得积分10
1分钟前
tmobiusx完成签到,获得积分10
1分钟前
1分钟前
xiaogang127完成签到 ,获得积分10
1分钟前
水兰色发布了新的文献求助30
1分钟前
fogsea完成签到,获得积分0
2分钟前
jfw完成签到 ,获得积分10
2分钟前
隐形曼青应助力王采纳,获得10
2分钟前
WLY完成签到 ,获得积分10
2分钟前
科研狗完成签到 ,获得积分10
2分钟前
浚稚完成签到 ,获得积分10
3分钟前
铜锣湾新之助完成签到 ,获得积分10
3分钟前
GGBond完成签到 ,获得积分10
3分钟前
wure10完成签到 ,获得积分10
3分钟前
aniu完成签到,获得积分10
3分钟前
力王完成签到,获得积分10
4分钟前
左丘冥发布了新的文献求助10
4分钟前
会笑的蜗牛完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
胖胖橘完成签到 ,获得积分10
4分钟前
力王发布了新的文献求助10
4分钟前
火星上惜天完成签到 ,获得积分10
4分钟前
今后应助cqnusq采纳,获得10
5分钟前
heidi完成签到 ,获得积分10
5分钟前
5分钟前
cqnusq发布了新的文献求助10
5分钟前
cqnusq完成签到,获得积分10
6分钟前
juan完成签到 ,获得积分10
6分钟前
6分钟前
微生完成签到 ,获得积分10
6分钟前
852应助缓慢珠采纳,获得10
6分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491367
求助须知:如何正确求助?哪些是违规求助? 3077983
关于积分的说明 9151302
捐赠科研通 2770610
什么是DOI,文献DOI怎么找? 1520544
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702323