SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans

医学 病变 脊髓 髓内棒 磁共振成像 矢状面 放射科 脊髓损伤 分割 绳索 腰椎 外科 人工智能 计算机科学 精神科
作者
Enamundram Naga Karthik,Jan Valošek,Andrew C. Smith,Dario Pfyffer,Simon Schading,Lynn Farner,Kenneth A. Weber,Patrick Freund,Julien Cohen‐Adad
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240005
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a deep learning tool for the automatic segmentation of the spinal cord and intramedullary lesions in spinal cord injury (SCI) on T2-weighted MRI scans. Materials and Methods This retrospective study included MRI data acquired between July 2002 and February 2023 from 191 patients with SCI (mean age, 48.1 years ± 17.9 [SD]; 142 males). The data consisted of T2-weighted MRI acquired using different scanner manufacturers with various image resolutions (isotropic and anisotropic) and orientations (axial and sagittal). Patients had different lesion etiologies (traumatic, ischemic, and hemorrhagic) and lesion locations across the cervical, thoracic and lumbar spine. A deep learning model, SCIseg, was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord. The segmentations from the proposed model were visually and quantitatively compared with those from three other open-source methods (PropSeg, DeepSeg and contrast-agnostic, all part of the Spinal Cord Toolbox). Wilcoxon signed-rank test was used to compare quantitative MRI biomarkers of SCI (lesion volume, lesion length, and maximal axial damage ratio) derived from the manual reference standard lesion masks and biomarkers obtained automatically with SCIseg segmentations. Results SCIseg achieved a Dice score of 0.92 ± 0.07 (mean ± SD) and 0.61 ± 0.27 for spinal cord and SCI lesion segmentation, respectively. There was no evidence of a difference between lesion length ( P = .42) and maximal axial damage ratio ( P = .16) computed from manually annotated lesions and the lesion segmentations obtained using SCIseg. Conclusion SCIseg accurately segmented intramedullary lesions on a diverse dataset of T2-weighted MRI scans and extracted relevant lesion biomarkers (namely, lesion volume, lesion length, and maximal axial damage ratio). SCIseg is open-source and accessible through the Spinal Cord Toolbox (v6.2 and above). Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66发发布了新的文献求助10
1秒前
乐乐乐乐乐乐应助zzz采纳,获得10
2秒前
大个应助嘻嘻滑呀采纳,获得10
2秒前
sxyyy发布了新的文献求助10
3秒前
wZx发布了新的文献求助10
4秒前
4秒前
材料摆渡人完成签到,获得积分10
4秒前
4秒前
小玲子发布了新的文献求助10
6秒前
6秒前
酷波er应助云风采纳,获得10
8秒前
独特的半芹完成签到,获得积分10
8秒前
8秒前
CipherSage应助李点点采纳,获得10
8秒前
一叶知秋完成签到,获得积分10
8秒前
Zpiao发布了新的文献求助10
9秒前
10秒前
魔幻的访云完成签到,获得积分20
10秒前
爱吃肉肉完成签到,获得积分10
12秒前
13秒前
13927完成签到,获得积分10
13秒前
标致的青梦完成签到,获得积分20
14秒前
15秒前
云瑾应助DQ2pi采纳,获得10
16秒前
16秒前
依琬应助若澈采纳,获得10
16秒前
wZx完成签到,获得积分20
17秒前
HCLonely应助BINBIN采纳,获得10
17秒前
kittyLoYuer完成签到 ,获得积分10
18秒前
壮观戾完成签到,获得积分10
20秒前
Zpiao完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
23秒前
leoy10621发布了新的文献求助30
23秒前
24秒前
今后应助李点点采纳,获得10
24秒前
24秒前
壮观戾发布了新的文献求助50
24秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213966
求助须知:如何正确求助?哪些是违规求助? 2862533
关于积分的说明 8134362
捐赠科研通 2528767
什么是DOI,文献DOI怎么找? 1362973
科研通“疑难数据库(出版商)”最低求助积分说明 643729
邀请新用户注册赠送积分活动 616041