SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans

医学 病变 脊髓 髓内棒 磁共振成像 矢状面 放射科 脊髓损伤 分割 绳索 腰椎 外科 人工智能 计算机科学 精神科
作者
Enamundram Naga Karthik,Jan Valošek,Andrew C. Smith,Dario Pfyffer,Simon Schading,Lynn Farner,Kenneth A. Weber,Patrick Freund,Julien Cohen‐Adad
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240005
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a deep learning tool for the automatic segmentation of the spinal cord and intramedullary lesions in spinal cord injury (SCI) on T2-weighted MRI scans. Materials and Methods This retrospective study included MRI data acquired between July 2002 and February 2023 from 191 patients with SCI (mean age, 48.1 years ± 17.9 [SD]; 142 males). The data consisted of T2-weighted MRI acquired using different scanner manufacturers with various image resolutions (isotropic and anisotropic) and orientations (axial and sagittal). Patients had different lesion etiologies (traumatic, ischemic, and hemorrhagic) and lesion locations across the cervical, thoracic and lumbar spine. A deep learning model, SCIseg, was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord. The segmentations from the proposed model were visually and quantitatively compared with those from three other open-source methods (PropSeg, DeepSeg and contrast-agnostic, all part of the Spinal Cord Toolbox). Wilcoxon signed-rank test was used to compare quantitative MRI biomarkers of SCI (lesion volume, lesion length, and maximal axial damage ratio) derived from the manual reference standard lesion masks and biomarkers obtained automatically with SCIseg segmentations. Results SCIseg achieved a Dice score of 0.92 ± 0.07 (mean ± SD) and 0.61 ± 0.27 for spinal cord and SCI lesion segmentation, respectively. There was no evidence of a difference between lesion length ( P = .42) and maximal axial damage ratio ( P = .16) computed from manually annotated lesions and the lesion segmentations obtained using SCIseg. Conclusion SCIseg accurately segmented intramedullary lesions on a diverse dataset of T2-weighted MRI scans and extracted relevant lesion biomarkers (namely, lesion volume, lesion length, and maximal axial damage ratio). SCIseg is open-source and accessible through the Spinal Cord Toolbox (v6.2 and above). Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助liuzhanyu采纳,获得10
刚刚
齐以言完成签到,获得积分10
1秒前
1秒前
核桃发布了新的文献求助10
1秒前
ding应助知己采纳,获得10
1秒前
Ava应助阿丑的小伙伴采纳,获得10
1秒前
小石头发布了新的文献求助10
1秒前
2秒前
1717发布了新的文献求助10
3秒前
柚子皮发布了新的文献求助20
3秒前
拖把粘十完成签到 ,获得积分10
4秒前
北柑完成签到,获得积分20
4秒前
研友_r8YgPn发布了新的文献求助10
5秒前
lzzd031416完成签到,获得积分10
5秒前
Q Eason发布了新的文献求助10
6秒前
布洛芬完成签到,获得积分20
7秒前
lzx发布了新的文献求助10
7秒前
7秒前
JamesHao完成签到,获得积分10
7秒前
7秒前
9秒前
成博应助可爱的凛采纳,获得10
9秒前
wangdao完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
鱼啵啵完成签到,获得积分10
10秒前
10秒前
小河鱼发布了新的文献求助50
10秒前
i黄m完成签到,获得积分20
11秒前
kyo发布了新的文献求助10
11秒前
12秒前
wp完成签到,获得积分10
12秒前
ALUCK发布了新的文献求助10
13秒前
13秒前
rmrggy发布了新的文献求助10
14秒前
Han发布了新的文献求助10
15秒前
16秒前
李健的小迷弟应助lan采纳,获得10
17秒前
上官若男应助707采纳,获得10
17秒前
隐形曼青应助三人行采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868