SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans

医学 病变 脊髓 髓内棒 磁共振成像 矢状面 放射科 脊髓损伤 分割 绳索 腰椎 外科 人工智能 计算机科学 精神科
作者
Enamundram Naga Karthik,Jan Valošek,Andrew C. Smith,Dario Pfyffer,Simon Schading,Lynn Farner,Kenneth A. Weber,Patrick Freund,Julien Cohen‐Adad
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240005
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a deep learning tool for the automatic segmentation of the spinal cord and intramedullary lesions in spinal cord injury (SCI) on T2-weighted MRI scans. Materials and Methods This retrospective study included MRI data acquired between July 2002 and February 2023 from 191 patients with SCI (mean age, 48.1 years ± 17.9 [SD]; 142 males). The data consisted of T2-weighted MRI acquired using different scanner manufacturers with various image resolutions (isotropic and anisotropic) and orientations (axial and sagittal). Patients had different lesion etiologies (traumatic, ischemic, and hemorrhagic) and lesion locations across the cervical, thoracic and lumbar spine. A deep learning model, SCIseg, was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord. The segmentations from the proposed model were visually and quantitatively compared with those from three other open-source methods (PropSeg, DeepSeg and contrast-agnostic, all part of the Spinal Cord Toolbox). Wilcoxon signed-rank test was used to compare quantitative MRI biomarkers of SCI (lesion volume, lesion length, and maximal axial damage ratio) derived from the manual reference standard lesion masks and biomarkers obtained automatically with SCIseg segmentations. Results SCIseg achieved a Dice score of 0.92 ± 0.07 (mean ± SD) and 0.61 ± 0.27 for spinal cord and SCI lesion segmentation, respectively. There was no evidence of a difference between lesion length ( P = .42) and maximal axial damage ratio ( P = .16) computed from manually annotated lesions and the lesion segmentations obtained using SCIseg. Conclusion SCIseg accurately segmented intramedullary lesions on a diverse dataset of T2-weighted MRI scans and extracted relevant lesion biomarkers (namely, lesion volume, lesion length, and maximal axial damage ratio). SCIseg is open-source and accessible through the Spinal Cord Toolbox (v6.2 and above). Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助惠惠采纳,获得10
刚刚
wangyang完成签到 ,获得积分10
刚刚
cwn关注了科研通微信公众号
1秒前
1秒前
nini完成签到,获得积分10
1秒前
谢书南完成签到,获得积分10
1秒前
Khr1stINK发布了新的文献求助10
1秒前
1秒前
起司嗯发布了新的文献求助10
2秒前
英姑应助星星采纳,获得10
3秒前
3秒前
木野狐发布了新的文献求助10
3秒前
4秒前
搬砖道人发布了新的文献求助10
4秒前
自然的初丹完成签到,获得积分20
4秒前
泡泡鱼完成签到 ,获得积分10
5秒前
柳叶完成签到,获得积分10
5秒前
杂货铺老板娘完成签到,获得积分10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
通~发布了新的文献求助10
5秒前
soso应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
6秒前
dyh6802完成签到,获得积分10
6秒前
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
kk应助科研通管家采纳,获得20
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得20
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
平常的G应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794