方位(导航)
滚动轴承
特征工程
计算机科学
要素(刑法)
图形
特征(语言学)
人工智能
断层(地质)
机器学习
模式识别(心理学)
理论计算机科学
深度学习
地质学
语言学
哲学
物理
量子力学
地震学
政治学
法学
振动
作者
Seyed Mohammad Hosseini,Abolfazl Dibaji,Sadegh Sulaimany
出处
期刊:Engineering research express
[IOP Publishing]
日期:2024-11-07
标识
DOI:10.1088/2631-8695/ad8ff0
摘要
Abstract Fault diagnosis in rolling element bearings is critical for ensuring machinery reliability. This study improves machine learning techniques for predictive fault detection using the benchmark CWRU bearing dataset. Vibration signal data is preprocessed via balancing and graph-based feature engineering is performed to enable effective model training. Diverse classifiers including Random Forests, Support Vector Machines and Neural Networks are systematically evaluated through 10-fold cross-validation. Most of the models demonstrate exceptional performance, with top accuracies and AUC scores of 1.00. The research highlights the potential of hidden features that consider the implicit relations between the entities to improve predictive maintenance through data-driven bearing fault diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI