异质结
外延
微电子
分子束外延
材料科学
工程物理
纳米技术
光电子学
计算机科学
物理
图层(电子)
作者
Yeonjoo Lee,Soo Ho Choi,Hyunseok Kim,Jinkyoung Yoo
标识
DOI:10.1002/smtd.202401815
摘要
Abstract Epitaxy, a process to prepare crystalline materials in nanostructures and thin films, is the core technology for preparing high‐quality materials as a key enabler of next‐generation microelectronics and quantum information system. Progress in epitaxy has been expanding the choice of materials and their heterostructures beyond the combinations limited by materials compatibility. However, the improvement of material quality, physical implementation of materials with unique properties, and integration of incommensurate materials in an architecture have been the challenging issues. Emerging materials, including 2D materials and quantum materials, have opened opportunities to study epitaxy mechanisms and realize various functional devices. Acceleration of discovery and progress in epitaxy research should be accomplished by “understanding of epitaxy under various circumstances at multiple length scales” and “integration of experiments and models.” In the perspective, a basic summary of the status of epitaxially grown materials, the challenges in epitaxy research, and integration of modeling epitaxy and ultimate control of the epitaxy process with advanced characterization techniques are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI