范德瓦尔斯力
过电位
析氧
塔菲尔方程
兴奋剂
催化作用
化学
氧化物
密度泛函理论
分解水
化学物理
材料科学
无机化学
物理化学
计算化学
电化学
电极
光电子学
有机化学
分子
生物化学
光催化
作者
Ke Jia,Wenxiang Zhu,Yujin Ji,Jinxin Chen,Chenchen Li,Yue Wang,Qun Wang,Wei-Hsiang Huang,Zhiwei Hu,Youyong Li,Qi Shao,Jianmei Lu
标识
DOI:10.1002/anie.202422740
摘要
Anodic oxygen evolution reaction (OER) exhibits a sluggish four‐electron transfer process, necessitating catalysts with exceptional catalytic activity to enhance its kinetic rate. Van der Waals layered oxides are ideal materials for catalyst design, yet its stability for acidic OER remains large obstacle. Doping provides a crucial way to improve the activity and stability simultaneously. However, doping in Van der Waals layered oxides remains a great challenge since it easily leads to lattice distortion or even the crystal structure damage. In this work, we successfully doping acid‐resistant niobium (Nb) into Van der Waals layered edge‐shared 1T phase iridium oxide (1T‐IrO2) via alkali‐assisted thermal method. 1T‐IrO2 with a 5% Nb doping (Nb0.05Ir0.95O2) only required an overpotential of 191 mV to achieve a current density of 10 mA cm‐2 in 0.5 M H2SO4, 56 mV lower than that of 1T‐IrO2. When applied in a proton exchange membrane water electrolyzer, Nb0.05Ir0.95O2 achieved a current density of 1.2 A cm‐2 at a cell voltage of 1.7 V for 50 days. Density functional theory calculation reveals that doping Nb changes the potential‐determining step from the *OOH deprotonation process in 1T‐IrO2 to the *O‐OH coupling process in Nb0.05Ir0.95O2.
科研通智能强力驱动
Strongly Powered by AbleSci AI