Spatial Transcriptomics: Biotechnologies, Computational Tools, and Neuroscience Applications

神经科学 计算神经科学 神经信息学 转化式学习 计算机科学 数据科学 认知科学 生物 心理学 教育学
作者
Qianwen Wang,Hong-Yuan Zhu,Linhong Deng,Shuangbin Xu,Wenqin Xie,Ming Li,Rui Wang,Tie Liang,Li Zhan,Guangchuang Yu
出处
期刊:Small methods [Wiley]
标识
DOI:10.1002/smtd.202401107
摘要

Spatial transcriptomics (ST) represents a revolutionary approach in molecular biology, providing unprecedented insights into the spatial organization of gene expression within tissues. This review aims to elucidate advancements in ST technologies, their computational tools, and their pivotal applications in neuroscience. It is begun with a historical overview, tracing the evolution from early image-based techniques to contemporary sequence-based methods. Subsequently, the computational methods essential for ST data analysis, including preprocessing, cell type annotation, spatial clustering, detection of spatially variable genes, cell-cell interaction analysis, and 3D multi-slices integration are discussed. The central focus of this review is the application of ST in neuroscience, where it has significantly contributed to understanding the brain's complexity. Through ST, researchers advance brain atlas projects, gain insights into brain development, and explore neuroimmune dysfunctions, particularly in brain tumors. Additionally, ST enhances understanding of neuronal vulnerability in neurodegenerative diseases like Alzheimer's and neuropsychiatric disorders such as schizophrenia. In conclusion, while ST has already profoundly impacted neuroscience, challenges remain issues such as enhancing sequencing technologies and developing robust computational tools. This review underscores the transformative potential of ST in neuroscience, paving the way for new therapeutic insights and advancements in brain research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
DR.V发布了新的文献求助10
6秒前
Akim应助飞快的笑容采纳,获得10
7秒前
7秒前
Aiden发布了新的文献求助10
7秒前
10秒前
10秒前
11秒前
好远加身发布了新的文献求助10
12秒前
12秒前
shenghaowen完成签到,获得积分10
13秒前
DR.V完成签到,获得积分10
14秒前
hanmanman发布了新的文献求助10
14秒前
俏皮的戎完成签到,获得积分10
15秒前
harrision发布了新的文献求助10
16秒前
lf发布了新的文献求助10
16秒前
zht发布了新的文献求助10
17秒前
dd发布了新的文献求助10
17秒前
18秒前
光亮语梦完成签到 ,获得积分10
18秒前
zhi发布了新的文献求助10
18秒前
星辰大海应助GAOBIN000采纳,获得10
20秒前
22秒前
23秒前
田様应助好远加身采纳,获得10
23秒前
安静幻枫应助BH采纳,获得10
26秒前
26秒前
wyx发布了新的文献求助10
27秒前
jhope应助hanmanman采纳,获得10
27秒前
30秒前
31秒前
小马甲应助科研大满贯采纳,获得10
31秒前
GAOBIN000发布了新的文献求助10
35秒前
萧水白应助IYHA采纳,获得10
37秒前
星辰大海应助zht采纳,获得10
38秒前
DDX完成签到 ,获得积分10
38秒前
Aiden完成签到,获得积分20
40秒前
NexusExplorer应助dd采纳,获得10
41秒前
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313855
求助须知:如何正确求助?哪些是违规求助? 2946137
关于积分的说明 8528616
捐赠科研通 2621703
什么是DOI,文献DOI怎么找? 1434035
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650691