Molecular and genetic insights into human ovarian aging from single-nuclei multi-omics analyses

生物 卵巢 转录组 表观遗传学 染色质 电池类型 PI3K/AKT/mTOR通路 全基因组关联研究 基因 计算生物学 遗传学 细胞 基因表达 信号转导 DNA甲基化 单核苷酸多态性 基因型
作者
Chen Jin,Xizhe Wang,Jiping Yang,Seung-Soo Kim,Adam D. Hudgins,Amir Gamliel,Mingzhuo Pei,Daniela Contreras,Melody Devos,Qinghua Guo,Jan Vijg,Marco Conti,Jan H.J. Hoeijmakers,Judith Campisi,Rogerio A. Løbo,Zev Williams,Michael G. Rosenfeld,Yousin Suh
出处
期刊:Nature Aging 被引量:7
标识
DOI:10.1038/s43587-024-00762-5
摘要

The ovary is the first organ to age in the human body, affecting both fertility and overall health. However, the biological mechanisms underlying human ovarian aging remain poorly understood. Here we present a comprehensive single-nuclei multi-omics atlas of four young (ages 23–29 years) and four reproductively aged (ages 49–54 years) human ovaries. Our analyses reveal coordinated changes in transcriptomes and chromatin accessibilities across cell types in the ovary during aging, notably mTOR signaling being a prominent ovary-specific aging pathway. Cell-type-specific regulatory networks reveal enhanced activity of the transcription factor CEBPD across cell types in the aged ovary. Integration of our multi-omics data with genetic variants associated with age at natural menopause demonstrates a global impact of functional variants on gene regulatory networks across ovarian cell types. We nominate functional non-coding regulatory variants, their target genes and ovarian cell types and regulatory mechanisms. This atlas provides a valuable resource for understanding the cellular, molecular and genetic basis of human ovarian aging. The molecular and cellular mechanisms underlying ovarian aging are incompletely understood. Here the authors provide single-nuclei RNA and ATAC-seq of human ovarian tissue from four young and four reproductively aged donors, revealing coordinated transcriptomic and epigenomic changes across cell types and highlighting a role for mTOR signaling in reproductive aging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiantian完成签到,获得积分10
1秒前
1221211发布了新的文献求助10
2秒前
guojinyu应助快乐的忆山采纳,获得10
3秒前
阿居发布了新的文献求助10
3秒前
Edelweiss完成签到,获得积分20
3秒前
小胡发布了新的文献求助30
3秒前
6and1完成签到,获得积分10
5秒前
狂野悟空完成签到,获得积分10
5秒前
ljx完成签到 ,获得积分10
5秒前
7秒前
7秒前
8秒前
9秒前
9秒前
紫杉完成签到,获得积分10
9秒前
12秒前
英姑应助selena采纳,获得10
12秒前
Guan完成签到,获得积分10
12秒前
拂袖发布了新的文献求助10
12秒前
qmac发布了新的文献求助10
12秒前
14秒前
机智的大船完成签到,获得积分20
14秒前
14秒前
16秒前
whale发布了新的文献求助10
17秒前
Riggle G发布了新的文献求助10
17秒前
Lucas完成签到,获得积分10
20秒前
20秒前
21秒前
共享精神应助www采纳,获得10
22秒前
赘婿应助zhangzzz采纳,获得10
23秒前
23秒前
TK完成签到 ,获得积分10
23秒前
深情安青应助海迪采纳,获得10
24秒前
Theo发布了新的文献求助10
24秒前
韶卿完成签到,获得积分10
25秒前
25秒前
111111完成签到,获得积分10
26秒前
一一发布了新的文献求助10
28秒前
29秒前
高分求助中
All the Birds of the World 2000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3717968
求助须知:如何正确求助?哪些是违规求助? 3264638
关于积分的说明 9935342
捐赠科研通 2978444
什么是DOI,文献DOI怎么找? 1633426
邀请新用户注册赠送积分活动 775163
科研通“疑难数据库(出版商)”最低求助积分说明 745405