Universal Image Restoration Pre-training via Degradation Classification

降级(电信) 图像复原 培训(气象学) 图像(数学) 计算机科学 人工智能 模式识别(心理学) 计算机视觉 图像处理 地理 电信 气象学
作者
JiaKui Hu,Lujia Jin,Zhengjian Yao,Yanye Lu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.15510
摘要

This paper proposes the Degradation Classification Pre-Training (DCPT), which enables models to learn how to classify the degradation type of input images for universal image restoration pre-training. Unlike the existing self-supervised pre-training methods, DCPT utilizes the degradation type of the input image as an extremely weak supervision, which can be effortlessly obtained, even intrinsic in all image restoration datasets. DCPT comprises two primary stages. Initially, image features are extracted from the encoder. Subsequently, a lightweight decoder, such as ResNet18, is leveraged to classify the degradation type of the input image solely based on the features extracted in the first stage, without utilizing the input image. The encoder is pre-trained with a straightforward yet potent DCPT, which is used to address universal image restoration and achieve outstanding performance. Following DCPT, both convolutional neural networks (CNNs) and transformers demonstrate performance improvements, with gains of up to 2.55 dB in the 10D all-in-one restoration task and 6.53 dB in the mixed degradation scenarios. Moreover, previous self-supervised pretraining methods, such as masked image modeling, discard the decoder after pre-training, while our DCPT utilizes the pre-trained parameters more effectively. This superiority arises from the degradation classifier acquired during DCPT, which facilitates transfer learning between models of identical architecture trained on diverse degradation types. Source code and models are available at https://github.com/MILab-PKU/dcpt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满的向雁完成签到,获得积分10
刚刚
2秒前
少时黑羽完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
wuxxxx发布了新的文献求助10
4秒前
5秒前
科研通AI5应助eagle14835采纳,获得10
5秒前
Ava应助persist采纳,获得10
5秒前
transhuman发布了新的文献求助10
6秒前
6秒前
ztayx完成签到 ,获得积分10
6秒前
yuuan完成签到 ,获得积分10
6秒前
Jennifer发布了新的文献求助10
6秒前
共享精神应助风中的向卉采纳,获得10
7秒前
sundial完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
SciGPT应助中禅寺秋彦采纳,获得10
9秒前
领导范儿应助Teresa采纳,获得10
9秒前
冰淇淋完成签到,获得积分10
9秒前
FOLY发布了新的文献求助10
9秒前
香蕉觅云应助ff采纳,获得10
10秒前
DHW1703701完成签到 ,获得积分10
11秒前
薄荷香菜汁完成签到,获得积分10
11秒前
民工发布了新的文献求助10
12秒前
12秒前
斟星完成签到,获得积分10
13秒前
wuxxxx完成签到,获得积分20
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
嘿嘿嘿完成签到,获得积分10
16秒前
16秒前
落幕熊猫完成签到,获得积分10
17秒前
遇上就这样吧应助是的哇采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771