期刊:ACS Photonics [American Chemical Society] 日期:2024-12-20
标识
DOI:10.1021/acsphotonics.4c01560
摘要
It is intriguing to manipulate light in different ways depending on its properties. This allows a passive device to function with versatility without the need for active tuning. In other words, light itself can be used as an optical control knob. Multiplexable optical devices hold immense promise as ultrathin integrated processors, capable of manipulating multiple parameters of light. In this study, inverse design methods are employed to optimize wavelength-multiplexed and polarization-multiplexed meta-devices for imaging and processing. These meta-devices demonstrate bright-field imaging and edge detection at different wavelengths or polarization states, effectively conducting Fourier filtering on input images by adjusting the momentum transfer function. The innovative approach paves the way for broader utilization of optical meta-devices in multidimensional light field multiplexing.