Parallelize Single-Site Dynamics up to Dobrushin Criterion

计算机科学 动力学(音乐) 并行计算 心理学 教育学
作者
H.W. Liu,Yitong Yin
出处
期刊:Journal of the ACM [Association for Computing Machinery]
标识
DOI:10.1145/3708558
摘要

Single-site dynamics are canonical Markov chain based algorithms for sampling from high-dimensional distributions, such as the Gibbs distributions of graphical models. We introduce a simple and generic parallel algorithm that faithfully simulates single-site dynamics. Under a much relaxed, asymptotic variant of the ℓ p -Dobrushin’s condition—where the Dobrushin’s influence matrix has a bounded ℓ p -induced operator norm for an arbitrary p ∈ [1, ∞]—our algorithm simulates N steps of single-site updates within a parallel depth of O ( N / n + log n ) on \(\tilde{O}(m) \) processors, where n is the number of sites and m is the size of the graphical model. For Boolean-valued random variables, if the ℓ p -Dobrushin’s condition holds—specifically, if the ℓ p -induced operator norm of the Dobrushin’s influence matrix is less than 1—the parallel depth can be further reduced to O (log N + log n ), achieving an exponential speedup. These results suggest that single-site dynamics with near-linear mixing times can be parallelized into \(\mathsf {RNC} \) sampling algorithms, independent of the maximum degree of the underlying graphical model, as long as the Dobrushin influence matrix maintains a bounded operator norm. We show the effectiveness of this approach with \(\mathsf {RNC} \) samplers for the hardcore and Ising models within their uniqueness regimes, as well as an \(\mathsf {RNC} \) SAT sampler for satisfying solutions of CNF formulas in a local lemma regime. Furthermore, by employing non-adaptive simulated annealing, these \(\mathsf {RNC} \) samplers can be transformed into \(\mathsf {RNC} \) algorithms for approximate counting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑的路人完成签到,获得积分10
刚刚
1秒前
CipherSage应助高兴的碧琴采纳,获得10
2秒前
反之完成签到,获得积分10
2秒前
共享精神应助Ylinda采纳,获得10
2秒前
壮观的沉鱼关注了科研通微信公众号
3秒前
qipupu222完成签到,获得积分10
4秒前
aldehyde应助沉溺于山野采纳,获得10
4秒前
怕黑的不惜完成签到,获得积分20
4秒前
科研通AI5应助wonhui采纳,获得10
4秒前
buder完成签到,获得积分10
5秒前
沉淀完成签到,获得积分20
5秒前
娃娃菜完成签到,获得积分10
6秒前
刘明生发布了新的文献求助10
6秒前
百里长青应助sadsada采纳,获得10
6秒前
7秒前
7秒前
7秒前
彩色忆雪完成签到,获得积分10
8秒前
8秒前
wangzhen完成签到,获得积分20
8秒前
wang666应助swordlee采纳,获得30
9秒前
nnn完成签到,获得积分10
9秒前
彩色忆雪发布了新的文献求助10
10秒前
霸气早晨发布了新的文献求助10
10秒前
赘婿应助万物安生采纳,获得10
10秒前
高中生发布了新的文献求助10
11秒前
孙pc完成签到,获得积分10
11秒前
111发布了新的文献求助10
11秒前
12秒前
小二郎应助qzj采纳,获得10
13秒前
13秒前
顾矜应助安安采纳,获得10
13秒前
14秒前
mqx完成签到 ,获得积分10
15秒前
peach发布了新的文献求助20
16秒前
lunlunya发布了新的文献求助20
16秒前
17秒前
wangzhen关注了科研通微信公众号
18秒前
胖胖应助爱笑半雪采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126