HisynSeg: Weakly-Supervised Histopathological Image Segmentation via Image-Mixing Synthesis and Consistency Regularization

图像分割 人工智能 正规化(语言学) 尺度空间分割 计算机视觉 模式识别(心理学) 基于分割的对象分类 图像(数学) 一致性(知识库) 分割 计算机科学 图像纹理 数学
作者
Zijie Fang,Yifeng Wang,Peizhang Xie,Zhi Wang,Yongbing Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3520129
摘要

Tissue semantic segmentation is one of the key tasks in computational pathology.To avoid the expensive and laborious acquisition of pixel-level annotations, a wide range of studies attempt to adopt the class activation map (CAM), a weakly-supervised learning scheme, to achieve pixel-level tissue segmentation.However, CAMbased methods are prone to suffer from under-activation and over-activation issues, leading to poor segmentation performance.To address this problem, we propose a novel weakly-supervised semantic segmentation framework for histopathological images based on image-mixing synthesis and consistency regularization, dubbed HisynSeg.Specifically, synthesized histopathological images with pixel-level masks are generated for fully-supervised model training, where two synthesis strategies are proposed based on Mosaic transformation and B ézier mask generation.Besides, an image filtering module is developed to guarantee the authenticity of the synthesized images.In order to further avoid the model overfitting to the occasional synthesis artifacts, we additionally propose a novel self-supervised consistency regularization, which enables the real images without segmentation masks to supervise the training of the segmentation model.By integrating the proposed techniques, the HisynSeg framework successfully transforms the weakly-supervised semantic segmentation problem into a fully-supervised one, greatly improving the segmentation accuracy.Experimental results on three datasets prove that the proposed method achieves a state-of-the-art performance.Code is available at https://github.com/Vison307/HisynSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaojia完成签到,获得积分20
刚刚
刚刚
1秒前
1秒前
Kyra12完成签到,获得积分10
2秒前
郝宇完成签到,获得积分10
2秒前
2秒前
赘婿应助xiaokezhang采纳,获得10
3秒前
3秒前
斯坦933应助Fortune采纳,获得10
4秒前
vvvvvirus发布了新的文献求助10
5秒前
MIranda发布了新的文献求助30
5秒前
6秒前
加百莉完成签到,获得积分10
6秒前
juziyaya完成签到,获得积分0
8秒前
英吉利25发布了新的文献求助30
9秒前
hh发布了新的文献求助10
9秒前
10秒前
冰花之狱发布了新的文献求助10
10秒前
xiaojia发布了新的文献求助10
11秒前
逍遥游发布了新的文献求助10
11秒前
vvvvvirus完成签到,获得积分10
11秒前
松鼠15111完成签到,获得积分10
12秒前
JamesPei应助ttsx采纳,获得10
13秒前
叶赛文完成签到,获得积分10
13秒前
科研通AI6应助酷炫的啤酒采纳,获得10
13秒前
密林小叶子完成签到,获得积分10
13秒前
sss三发布了新的文献求助10
14秒前
14秒前
18秒前
爆米花应助wuwu采纳,获得10
19秒前
自然的剑封完成签到,获得积分10
20秒前
温柔从云发布了新的文献求助10
20秒前
21秒前
23秒前
科研通AI5应助冰花之狱采纳,获得10
24秒前
25秒前
杰杰杰杰发布了新的文献求助10
25秒前
清秀的乐儿完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546119
求助须知:如何正确求助?哪些是违规求助? 3977536
关于积分的说明 12316458
捐赠科研通 3645902
什么是DOI,文献DOI怎么找? 2007838
邀请新用户注册赠送积分活动 1043384
科研通“疑难数据库(出版商)”最低求助积分说明 932142