Reducing Marketplace Interference Bias via Shadow Prices

影子(心理学) 干扰(通信) 经济 计算机科学 计量经济学 业务 电信 频道(广播) 心理学 心理治疗师
作者
Ido Bright,Arthur Delarue,Ilan Lobel
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.01881
摘要

Marketplace companies rely heavily on experimentation when making changes to the design or operation of their platforms. The workhorse of experimentation is the randomized controlled trial (RCT), or A/B test, in which users are randomly assigned to treatment or control groups. However, marketplace interference causes the stable unit treatment value assumption to be violated, leading to bias in the standard RCT metric. In this work, we propose techniques for platforms to run standard RCTs and still obtain meaningful estimates despite the presence of marketplace interference. We specifically consider a generalized matching setting, in which the platform explicitly matches supply with demand via a linear programming algorithm. Our first proposal is for the platform to estimate the value of global treatment and global control via optimization. We prove that this approach is unbiased in the fluid limit. Our second proposal is to compare the average shadow price of the treatment and control groups rather than the total value accrued by each group. We prove that this technique corresponds to the correct first order approximation (in a Taylor series sense) of the value function of interest even in a finite-size system. We then use this result to prove that, under reasonable assumptions, our estimator is less biased than the RCT estimator. At the heart of our result is the idea that it is relatively easy to model interference in matching-driven marketplaces because, in such markets, the platform mediates the spillover. This paper was accepted by Itai Ashlagi, revenue management and market analytics. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01881 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
an发布了新的文献求助10
1秒前
1秒前
领导范儿应助袅袅采纳,获得10
1秒前
若狂完成签到,获得积分10
1秒前
Gyy完成签到,获得积分10
2秒前
2秒前
2秒前
上官若男应助hu970采纳,获得10
2秒前
3秒前
妮儿发布了新的文献求助10
4秒前
4秒前
Aile。完成签到,获得积分10
4秒前
4秒前
霹雳游侠完成签到,获得积分10
5秒前
hjj发布了新的文献求助10
7秒前
gg完成签到,获得积分10
7秒前
狂野觅云发布了新的文献求助10
7秒前
坚强的广山应助iRan采纳,获得200
7秒前
7秒前
余姚发布了新的文献求助10
7秒前
7秒前
7秒前
哈哈发布了新的文献求助10
7秒前
洛尚发布了新的文献求助10
8秒前
ccc发布了新的文献求助10
8秒前
8秒前
潦草发布了新的文献求助10
9秒前
fighting完成签到,获得积分10
9秒前
9秒前
源源源完成签到 ,获得积分10
10秒前
HEIKU应助鲤鱼凛采纳,获得10
10秒前
luca完成签到,获得积分10
10秒前
10秒前
handsomecat完成签到,获得积分10
10秒前
11秒前
神勇的雅香应助gms采纳,获得10
11秒前
眯眯眼的衬衫应助cleva采纳,获得10
11秒前
激动的一手完成签到,获得积分10
11秒前
怕黑的海豚关注了科研通微信公众号
11秒前
艺玲发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759