Machine Learning Approaches in High Myopia: Systematic Review and Meta-Analysis

荟萃分析 青光眼 接收机工作特性 医学 梅德林 系统回顾 机器学习 临床实习 人工智能 眼科 计算机科学 内科学 物理疗法 政治学 法学
作者
Huiyi Zuo,Baoyu Huang,Jian He,Fang Li,Mei‐Hua Huang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e57644-e57644
标识
DOI:10.2196/57644
摘要

Background In recent years, with the rapid development of machine learning (ML), it has gained widespread attention from researchers in clinical practice. ML models appear to demonstrate promising accuracy in the diagnosis of complex diseases, as well as in predicting disease progression and prognosis. Some studies have applied it to ophthalmology, primarily for the diagnosis of pathologic myopia and high myopia-associated glaucoma, as well as for predicting the progression of high myopia. ML-based detection still requires evidence-based validation to prove its accuracy and feasibility. Objective This study aims to discern the performance of ML methods in detecting high myopia and pathologic myopia in clinical practice, thereby providing evidence-based support for the future development and refinement of intelligent diagnostic or predictive tools. Methods PubMed, Cochrane, Embase, and Web of Science were thoroughly retrieved up to September 3, 2023. The prediction model risk of bias assessment tool was leveraged to appraise the risk of bias in the eligible studies. The meta-analysis was implemented using a bivariate mixed-effects model. In the validation set, subgroup analyses were conducted based on the ML target events (diagnosis and prediction of high myopia and diagnosis of pathological myopia and high myopia-associated glaucoma) and modeling methods. Results This study ultimately included 45 studies, of which 32 were used for quantitative meta-analysis. The meta-analysis results unveiled that for the diagnosis of pathologic myopia, the summary receiver operating characteristic (SROC), sensitivity, and specificity of ML were 0.97 (95% CI 0.95-0.98), 0.91 (95% CI 0.89-0.92), and 0.95 (95% CI 0.94-0.97), respectively. Specifically, deep learning (DL) showed an SROC of 0.97 (95% CI 0.95-0.98), sensitivity of 0.92 (95% CI 0.90-0.93), and specificity of 0.96 (95% CI 0.95-0.97), while conventional ML (non-DL) showed an SROC of 0.86 (95% CI 0.75-0.92), sensitivity of 0.77 (95% CI 0.69-0.84), and specificity of 0.85 (95% CI 0.75-0.92). For the diagnosis and prediction of high myopia, the SROC, sensitivity, and specificity of ML were 0.98 (95% CI 0.96-0.99), 0.94 (95% CI 0.90-0.96), and 0.94 (95% CI 0.88-0.97), respectively. For the diagnosis of high myopia-associated glaucoma, the SROC, sensitivity, and specificity of ML were 0.96 (95% CI 0.94-0.97), 0.92 (95% CI 0.85-0.96), and 0.88 (95% CI 0.67-0.96), respectively. Conclusions ML demonstrated highly promising accuracy in diagnosing high myopia and pathologic myopia. Moreover, based on the limited evidence available, we also found that ML appeared to have favorable accuracy in predicting the risk of developing high myopia in the future. DL can be used as a potential method for intelligent image processing and intelligent recognition, and intelligent examination tools can be developed in subsequent research to provide help for areas where medical resources are scarce. Trial Registration PROSPERO CRD42023470820; https://tinyurl.com/2xexp738
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗道天完成签到,获得积分10
1秒前
NexusExplorer应助薛定谔采纳,获得10
2秒前
2秒前
深情安青应助frank采纳,获得10
2秒前
科研通AI2S应助重要的天空采纳,获得10
2秒前
Yuhong完成签到,获得积分10
3秒前
精明寻梅完成签到,获得积分10
4秒前
科研dog完成签到,获得积分10
4秒前
hhhh发布了新的文献求助10
5秒前
shouyu29应助wangbq采纳,获得10
7秒前
silent发布了新的文献求助30
7秒前
Labubu完成签到 ,获得积分20
7秒前
Owen应助yan采纳,获得10
7秒前
KK完成签到 ,获得积分10
9秒前
10秒前
lulu完成签到,获得积分20
11秒前
又活了一天完成签到 ,获得积分10
11秒前
12秒前
12秒前
YUMI发布了新的文献求助10
13秒前
脑洞疼应助老迟到的灵煌采纳,获得10
13秒前
肖战的笑发布了新的文献求助10
14秒前
14秒前
小研完成签到 ,获得积分10
14秒前
杨冠渊完成签到,获得积分20
15秒前
15秒前
16秒前
lan发布了新的文献求助10
17秒前
科研通AI5应助阳光向秋采纳,获得10
17秒前
猪猪hero应助CYY采纳,获得10
17秒前
otaro发布了新的文献求助30
17秒前
xjn发布了新的文献求助10
18秒前
18秒前
j1kxm完成签到,获得积分10
19秒前
无言发布了新的文献求助10
19秒前
20秒前
lele200218发布了新的文献求助10
20秒前
一次过发布了新的文献求助10
21秒前
肖战的笑完成签到,获得积分10
22秒前
赐梦完成签到,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745787
求助须知:如何正确求助?哪些是违规求助? 3288729
关于积分的说明 10060328
捐赠科研通 3004942
什么是DOI,文献DOI怎么找? 1649984
邀请新用户注册赠送积分活动 785655
科研通“疑难数据库(出版商)”最低求助积分说明 751204