Evaluating Bard Gemini Pro and GPT-4 Vision Against Student Performance in Medical Visual Question Answering: Comparative Case Study

Python(编程语言) 德国的 可视化 生物统计学 计算机科学 医学教育 人工智能 医学 心理学 病理 地理 公共卫生 程序设计语言 考古
作者
Jonas Roos,Ron Martin,Robert Kaczmarczyk
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:8: e57592-e57592
标识
DOI:10.2196/57592
摘要

Abstract Background The rapid development of large language models (LLMs) such as OpenAI’s ChatGPT has significantly impacted medical research and education. These models have shown potential in fields ranging from radiological imaging interpretation to medical licensing examination assistance. Recently, LLMs have been enhanced with image recognition capabilities. Objective This study aims to critically examine the effectiveness of these LLMs in medical diagnostics and training by assessing their accuracy and utility in answering image-based questions from medical licensing examinations. Methods This study analyzed 1070 image-based multiple-choice questions from the AMBOSS learning platform, divided into 605 in English and 465 in German. Customized prompts in both languages directed the models to interpret medical images and provide the most likely diagnosis. Student performance data were obtained from AMBOSS, including metrics such as the “student passed mean” and “majority vote.” Statistical analysis was conducted using Python (Python Software Foundation), with key libraries for data manipulation and visualization. Results GPT-4 1106 Vision Preview (OpenAI) outperformed Bard Gemini Pro (Google), correctly answering 56.9% (609/1070) of questions compared to Bard’s 44.6% (477/1070), a statistically significant difference ( χ 2 ₁=32.1, P <.001). However, GPT-4 1106 left 16.1% (172/1070) of questions unanswered, significantly higher than Bard’s 4.1% (44/1070; χ 2 ₁=83.1, P <.001). When considering only answered questions, GPT-4 1106’s accuracy increased to 67.8% (609/898), surpassing both Bard (477/1026, 46.5%; χ 2 ₁=87.7, P <.001) and the student passed mean of (674/1070, SE 1.48%; χ 2 ₁=4.8, P =.03). Language-specific analysis revealed both models performed better in German than English, with GPT-4 1106 showing greater accuracy in German (282/465, 60.65% vs 327/605, 54.1%; χ 2 ₁=4.4, P =.04) and Bard Gemini Pro exhibiting a similar trend (255/465, 54.8% vs 222/605, 36.7%; χ 2 ₁=34.3, P <.001). The student majority vote achieved an overall accuracy of 94.5% (1011/1070), significantly outperforming both artificial intelligence models (GPT-4 1106: χ 2 ₁=408.5, P <.001; Bard Gemini Pro: χ 2 ₁=626.6, P <.001). Conclusions Our study shows that GPT-4 1106 Vision Preview and Bard Gemini Pro have potential in medical visual question-answering tasks and to serve as a support for students. However, their performance varies depending on the language used, with a preference for German. They also have limitations in responding to non-English content. The accuracy rates, particularly when compared to student responses, highlight the potential of these models in medical education, yet the need for further optimization and understanding of their limitations in diverse linguistic contexts remains critical.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伍六七完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
安静海菡完成签到,获得积分20
2秒前
尔容发布了新的文献求助10
2秒前
eco发布了新的文献求助10
2秒前
研友_V8RomL完成签到,获得积分10
3秒前
墨墨应助含糊的茹妖采纳,获得10
5秒前
酷波er应助xiaoxiao采纳,获得10
5秒前
5秒前
l98916发布了新的文献求助10
5秒前
6秒前
祎橘发布了新的文献求助10
7秒前
流浪大虾完成签到,获得积分10
7秒前
史小霜发布了新的文献求助10
7秒前
筏A完成签到 ,获得积分10
7秒前
略略略完成签到,获得积分10
9秒前
赘婿应助sunny采纳,获得10
9秒前
9秒前
隐形曼青应助萌神_HUGO采纳,获得10
10秒前
活力丹云发布了新的文献求助10
10秒前
人之路发布了新的文献求助10
11秒前
11秒前
14秒前
缓慢天抒完成签到 ,获得积分10
14秒前
15秒前
今天摸了吗完成签到,获得积分10
16秒前
双马尾小男生完成签到,获得积分10
16秒前
17秒前
哈基米发布了新的文献求助10
17秒前
SciGPT应助isak采纳,获得10
17秒前
安静海菡发布了新的文献求助10
18秒前
啦啦啦啦啦完成签到,获得积分10
19秒前
热心荔枝完成签到,获得积分10
19秒前
活力丹云完成签到,获得积分20
20秒前
zho发布了新的文献求助30
21秒前
LL完成签到,获得积分10
21秒前
sunny发布了新的文献求助10
22秒前
taotao发布了新的文献求助10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668076
求助须知:如何正确求助?哪些是违规求助? 3226524
关于积分的说明 9769880
捐赠科研通 2936484
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759677
科研通“疑难数据库(出版商)”最低求助积分说明 735474