已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TRIMS LST: A daily 1-km all-weather land surface temperature dataset for the Chinese landmass and surrounding areas (2000–2021)

环境科学 卫星 背景(考古学) 遥感 气象学 热红外 气候学 地理 红外线的 地质学 光学 物理 工程类 航空航天工程 考古
作者
Wenbin Tang,Ji Zhou,Jin Ma,Ziwei Wang,Lirong Ding,Xiaodong Zhang,Xu Zhang
标识
DOI:10.5194/essd-2023-27
摘要

Abstract. Land surface temperature (LST) is a key variable within the Earth’s climate system and a necessary input parameter required by numerous land-atmosphere models. It can be directly retrieved from satellite thermal infrared (TIR) observations, but cloud contamination results in many spatial missing. To investigate the temporal and spatial variations of LST in China, long-term, high-quality, and spatio-temporally continuous LST datasets (i.e., all-weather LST) are urgently needed. Fusing satellite TIR LST and reanalysis datasets is a viable route to obtain long time-series all-weather LST. Among satellite TIR LSTs, the MODIS LST is the most commonly used and a few all-weather LST products generated in this way have been reported recently. However, the publicly reported all-weather LSTs are not available during the temporal gaps of MODIS between 2000 and 2002. In this context, we report a daily 1-km all-weather LST dataset for the Chinese landmass and surrounding areas – TRIMS LST. Different from other products, the TRIMS LST begins on the first day of the new millennium (i.e., January 1, 2000). The TRIMS LST was generated based on the Enhanced Reanalysis and Thermal infrared remote sensing Merging (E-RTM) method. Specifically, the original RTM method was used to generate the TRIMS LST outside the temporal gaps. Two newly developed approaches, including the Random-Forest based Spatio-Temporal Merging (RFSTM) approach and Time-Sequential LST based Reconstruction (TSETR) approach, were used to produce Terra/MODIS-based and Aqua/MODIS-based TRIMS LSTs during the temporal gaps, respectively. Thorough evaluation of the TRIMS LST was conducted. A comparison with the GLDAS and ERA5-Land LSTs demonstrates that TRIMS LST has similar spatial patterns but higher image quality, more spatial details, and no evident spatial discontinuities. Further comparison with MODIS and AATSR LSTs shows that TRIMS LSTs agree well with them, with mean bias deviation (MBD) between -0.40 K and 0.30 K and standard deviation of bias (STD) between 1.17 K and 1.50 K. Validation based on ground measured LST at 19 ground sites showed that the mean bias error (MBE) of the TRIMS LST ranged from -2.26 K to 1.73 K and the root mean square error (RMSE) was 0.80 K to 3.68 K, with no significant difference between the clear-sky and cloudy conditions. The TRIMS LST has already been used by scientific communities in various applications such as soil moisture downscaling, evapotranspiration estimation, and urban heat island (UHI) modelling. The TRIMS LST is freely and conveniently available at https://doi.org/10.11888/Meteoro.tpdc.271252 (Zhou et al., 2021).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WBC完成签到,获得积分20
1秒前
yuan完成签到 ,获得积分10
1秒前
叼面包的数学狗完成签到 ,获得积分10
2秒前
小歘歘完成签到 ,获得积分10
2秒前
云上人完成签到 ,获得积分10
2秒前
山东老铁完成签到 ,获得积分10
2秒前
简单梦秋发布了新的文献求助10
2秒前
haodian完成签到 ,获得积分10
2秒前
Skymi完成签到,获得积分10
3秒前
multimodal完成签到 ,获得积分0
3秒前
理理完成签到 ,获得积分10
3秒前
Juvenilesy完成签到 ,获得积分10
3秒前
甜甜纸飞机完成签到 ,获得积分10
3秒前
良月完成签到 ,获得积分10
4秒前
小智完成签到 ,获得积分10
4秒前
快乐的素完成签到 ,获得积分10
4秒前
keep完成签到,获得积分10
4秒前
UU完成签到 ,获得积分10
4秒前
三个气的大门完成签到 ,获得积分10
4秒前
乐枫完成签到 ,获得积分10
5秒前
领导范儿应助逆天了呀采纳,获得10
5秒前
欣雪完成签到 ,获得积分10
5秒前
羊村霸总懒大王完成签到 ,获得积分10
6秒前
lzl008完成签到 ,获得积分10
6秒前
虚心的砖家完成签到,获得积分10
6秒前
YE完成签到 ,获得积分10
6秒前
双眼皮跳蚤完成签到,获得积分0
6秒前
ahaaa完成签到 ,获得积分10
7秒前
小谢同学完成签到 ,获得积分10
7秒前
疯狂的凡梦完成签到 ,获得积分10
7秒前
zy完成签到 ,获得积分10
7秒前
开心飞烟完成签到 ,获得积分10
8秒前
骊晨完成签到 ,获得积分10
9秒前
Wenjian7761完成签到,获得积分10
9秒前
suibiao完成签到 ,获得积分10
9秒前
英勇的梨愁完成签到 ,获得积分10
9秒前
修炼哥完成签到,获得积分10
10秒前
罗攀完成签到,获得积分10
10秒前
甜甜的紫菜完成签到 ,获得积分10
10秒前
FairyLeaf完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10