TRIMS LST: A daily 1-km all-weather land surface temperature dataset for the Chinese landmass and surrounding areas (2000–2021)

环境科学 卫星 背景(考古学) 遥感 气象学 热红外 气候学 地理 红外线的 地质学 光学 物理 工程类 航空航天工程 考古
作者
Wenbin Tang,Ji Zhou,Jin Ma,Ziwei Wang,Lirong Ding,Xiaodong Zhang,Xu Zhang
标识
DOI:10.5194/essd-2023-27
摘要

Abstract. Land surface temperature (LST) is a key variable within the Earth’s climate system and a necessary input parameter required by numerous land-atmosphere models. It can be directly retrieved from satellite thermal infrared (TIR) observations, but cloud contamination results in many spatial missing. To investigate the temporal and spatial variations of LST in China, long-term, high-quality, and spatio-temporally continuous LST datasets (i.e., all-weather LST) are urgently needed. Fusing satellite TIR LST and reanalysis datasets is a viable route to obtain long time-series all-weather LST. Among satellite TIR LSTs, the MODIS LST is the most commonly used and a few all-weather LST products generated in this way have been reported recently. However, the publicly reported all-weather LSTs are not available during the temporal gaps of MODIS between 2000 and 2002. In this context, we report a daily 1-km all-weather LST dataset for the Chinese landmass and surrounding areas – TRIMS LST. Different from other products, the TRIMS LST begins on the first day of the new millennium (i.e., January 1, 2000). The TRIMS LST was generated based on the Enhanced Reanalysis and Thermal infrared remote sensing Merging (E-RTM) method. Specifically, the original RTM method was used to generate the TRIMS LST outside the temporal gaps. Two newly developed approaches, including the Random-Forest based Spatio-Temporal Merging (RFSTM) approach and Time-Sequential LST based Reconstruction (TSETR) approach, were used to produce Terra/MODIS-based and Aqua/MODIS-based TRIMS LSTs during the temporal gaps, respectively. Thorough evaluation of the TRIMS LST was conducted. A comparison with the GLDAS and ERA5-Land LSTs demonstrates that TRIMS LST has similar spatial patterns but higher image quality, more spatial details, and no evident spatial discontinuities. Further comparison with MODIS and AATSR LSTs shows that TRIMS LSTs agree well with them, with mean bias deviation (MBD) between -0.40 K and 0.30 K and standard deviation of bias (STD) between 1.17 K and 1.50 K. Validation based on ground measured LST at 19 ground sites showed that the mean bias error (MBE) of the TRIMS LST ranged from -2.26 K to 1.73 K and the root mean square error (RMSE) was 0.80 K to 3.68 K, with no significant difference between the clear-sky and cloudy conditions. The TRIMS LST has already been used by scientific communities in various applications such as soil moisture downscaling, evapotranspiration estimation, and urban heat island (UHI) modelling. The TRIMS LST is freely and conveniently available at https://doi.org/10.11888/Meteoro.tpdc.271252 (Zhou et al., 2021).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研达人发布了新的文献求助10
4秒前
4秒前
4秒前
cherry bomb完成签到,获得积分10
4秒前
朱建军应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
7秒前
慕青应助Ace采纳,获得10
8秒前
8秒前
10秒前
ha发布了新的文献求助10
10秒前
songsong668发布了新的文献求助10
13秒前
阿秋发布了新的文献求助30
14秒前
15秒前
Ava应助qyang采纳,获得10
15秒前
情怀应助haochi采纳,获得30
17秒前
18秒前
18秒前
19秒前
20秒前
21秒前
21秒前
Ace发布了新的文献求助10
22秒前
songsong668完成签到,获得积分10
22秒前
阿秋完成签到,获得积分10
23秒前
坦率不惜完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
科研达人发布了新的文献求助30
24秒前
qyang发布了新的文献求助10
27秒前
潘潘发布了新的文献求助10
27秒前
上官若男应助科多兽骑士采纳,获得10
28秒前
啦啦啦发布了新的文献求助10
29秒前
可人不是旋律完成签到,获得积分20
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629