TRIMS LST: A daily 1-km all-weather land surface temperature dataset for the Chinese landmass and surrounding areas (2000–2021)

环境科学 卫星 背景(考古学) 遥感 气象学 热红外 气候学 地理 红外线的 地质学 光学 物理 工程类 航空航天工程 考古
作者
Wenbin Tang,Ji Zhou,Jin Ma,Ziwei Wang,Lirong Ding,Xiaodong Zhang,Xu Zhang
标识
DOI:10.5194/essd-2023-27
摘要

Abstract. Land surface temperature (LST) is a key variable within the Earth’s climate system and a necessary input parameter required by numerous land-atmosphere models. It can be directly retrieved from satellite thermal infrared (TIR) observations, but cloud contamination results in many spatial missing. To investigate the temporal and spatial variations of LST in China, long-term, high-quality, and spatio-temporally continuous LST datasets (i.e., all-weather LST) are urgently needed. Fusing satellite TIR LST and reanalysis datasets is a viable route to obtain long time-series all-weather LST. Among satellite TIR LSTs, the MODIS LST is the most commonly used and a few all-weather LST products generated in this way have been reported recently. However, the publicly reported all-weather LSTs are not available during the temporal gaps of MODIS between 2000 and 2002. In this context, we report a daily 1-km all-weather LST dataset for the Chinese landmass and surrounding areas – TRIMS LST. Different from other products, the TRIMS LST begins on the first day of the new millennium (i.e., January 1, 2000). The TRIMS LST was generated based on the Enhanced Reanalysis and Thermal infrared remote sensing Merging (E-RTM) method. Specifically, the original RTM method was used to generate the TRIMS LST outside the temporal gaps. Two newly developed approaches, including the Random-Forest based Spatio-Temporal Merging (RFSTM) approach and Time-Sequential LST based Reconstruction (TSETR) approach, were used to produce Terra/MODIS-based and Aqua/MODIS-based TRIMS LSTs during the temporal gaps, respectively. Thorough evaluation of the TRIMS LST was conducted. A comparison with the GLDAS and ERA5-Land LSTs demonstrates that TRIMS LST has similar spatial patterns but higher image quality, more spatial details, and no evident spatial discontinuities. Further comparison with MODIS and AATSR LSTs shows that TRIMS LSTs agree well with them, with mean bias deviation (MBD) between -0.40 K and 0.30 K and standard deviation of bias (STD) between 1.17 K and 1.50 K. Validation based on ground measured LST at 19 ground sites showed that the mean bias error (MBE) of the TRIMS LST ranged from -2.26 K to 1.73 K and the root mean square error (RMSE) was 0.80 K to 3.68 K, with no significant difference between the clear-sky and cloudy conditions. The TRIMS LST has already been used by scientific communities in various applications such as soil moisture downscaling, evapotranspiration estimation, and urban heat island (UHI) modelling. The TRIMS LST is freely and conveniently available at https://doi.org/10.11888/Meteoro.tpdc.271252 (Zhou et al., 2021).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TUTU完成签到 ,获得积分10
1秒前
左右完成签到 ,获得积分10
2秒前
楚寅完成签到 ,获得积分10
9秒前
奇奇怪怪的大鱼完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
15秒前
出厂价完成签到,获得积分10
15秒前
呆萌的蚂蚁完成签到 ,获得积分10
15秒前
董耀文完成签到,获得积分10
18秒前
氟锑酸完成签到 ,获得积分10
18秒前
lunhui6453完成签到 ,获得积分10
20秒前
Yi完成签到,获得积分10
21秒前
王继完成签到,获得积分10
21秒前
21秒前
卡片完成签到,获得积分10
23秒前
虚幻念寒完成签到 ,获得积分10
23秒前
胡思乱想完成签到,获得积分10
25秒前
26秒前
hahaha6789y完成签到,获得积分10
26秒前
cl完成签到,获得积分10
28秒前
sheep完成签到,获得积分10
29秒前
maybe完成签到,获得积分10
29秒前
秦含光完成签到,获得积分10
29秒前
Mo完成签到,获得积分10
29秒前
hahaha2完成签到,获得积分10
30秒前
spider534完成签到,获得积分10
30秒前
徐彬荣完成签到,获得积分10
30秒前
simon666完成签到,获得积分10
30秒前
BlueKitty完成签到,获得积分10
32秒前
Adamcssy19完成签到,获得积分10
33秒前
量子咸鱼K完成签到,获得积分10
33秒前
霡霂完成签到,获得积分10
33秒前
852应助科研通管家采纳,获得10
33秒前
33秒前
PaperCrane完成签到,获得积分10
33秒前
hahaha1完成签到,获得积分10
33秒前
surlamper完成签到,获得积分10
34秒前
曹广秀完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
39秒前
雪雪完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418566
求助须知:如何正确求助?哪些是违规求助? 4534257
关于积分的说明 14143326
捐赠科研通 4450472
什么是DOI,文献DOI怎么找? 2441268
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410417