TRIMS LST: A daily 1-km all-weather land surface temperature dataset for the Chinese landmass and surrounding areas (2000–2021)

环境科学 卫星 背景(考古学) 遥感 气象学 热红外 气候学 地理 红外线的 地质学 物理 考古 光学 航空航天工程 工程类
作者
Wenbin Tang,Ji Zhou,Jin Ma,Ziwei Wang,Lirong Ding,Xiaodong Zhang,Xu Zhang
标识
DOI:10.5194/essd-2023-27
摘要

Abstract. Land surface temperature (LST) is a key variable within the Earth’s climate system and a necessary input parameter required by numerous land-atmosphere models. It can be directly retrieved from satellite thermal infrared (TIR) observations, but cloud contamination results in many spatial missing. To investigate the temporal and spatial variations of LST in China, long-term, high-quality, and spatio-temporally continuous LST datasets (i.e., all-weather LST) are urgently needed. Fusing satellite TIR LST and reanalysis datasets is a viable route to obtain long time-series all-weather LST. Among satellite TIR LSTs, the MODIS LST is the most commonly used and a few all-weather LST products generated in this way have been reported recently. However, the publicly reported all-weather LSTs are not available during the temporal gaps of MODIS between 2000 and 2002. In this context, we report a daily 1-km all-weather LST dataset for the Chinese landmass and surrounding areas – TRIMS LST. Different from other products, the TRIMS LST begins on the first day of the new millennium (i.e., January 1, 2000). The TRIMS LST was generated based on the Enhanced Reanalysis and Thermal infrared remote sensing Merging (E-RTM) method. Specifically, the original RTM method was used to generate the TRIMS LST outside the temporal gaps. Two newly developed approaches, including the Random-Forest based Spatio-Temporal Merging (RFSTM) approach and Time-Sequential LST based Reconstruction (TSETR) approach, were used to produce Terra/MODIS-based and Aqua/MODIS-based TRIMS LSTs during the temporal gaps, respectively. Thorough evaluation of the TRIMS LST was conducted. A comparison with the GLDAS and ERA5-Land LSTs demonstrates that TRIMS LST has similar spatial patterns but higher image quality, more spatial details, and no evident spatial discontinuities. Further comparison with MODIS and AATSR LSTs shows that TRIMS LSTs agree well with them, with mean bias deviation (MBD) between -0.40 K and 0.30 K and standard deviation of bias (STD) between 1.17 K and 1.50 K. Validation based on ground measured LST at 19 ground sites showed that the mean bias error (MBE) of the TRIMS LST ranged from -2.26 K to 1.73 K and the root mean square error (RMSE) was 0.80 K to 3.68 K, with no significant difference between the clear-sky and cloudy conditions. The TRIMS LST has already been used by scientific communities in various applications such as soil moisture downscaling, evapotranspiration estimation, and urban heat island (UHI) modelling. The TRIMS LST is freely and conveniently available at https://doi.org/10.11888/Meteoro.tpdc.271252 (Zhou et al., 2021).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChenkLuo完成签到,获得积分10
1秒前
1秒前
huan发布了新的文献求助10
2秒前
qianqianaaa完成签到,获得积分20
2秒前
phl发布了新的文献求助10
3秒前
3秒前
CodeCraft应助hsh采纳,获得10
5秒前
6秒前
hopez关注了科研通微信公众号
6秒前
无辜的惜寒完成签到,获得积分10
7秒前
8秒前
CDN发布了新的文献求助10
8秒前
8秒前
9秒前
sss发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
13秒前
kekefefe发布了新的文献求助10
14秒前
14秒前
jialiu发布了新的文献求助10
14秒前
14秒前
Ava应助CDN采纳,获得30
15秒前
15秒前
15秒前
微笑的大树完成签到,获得积分10
16秒前
梦在彼岸发布了新的文献求助10
16秒前
Stitch发布了新的文献求助150
17秒前
17秒前
18秒前
深情安青应助jialiu采纳,获得10
19秒前
yi发布了新的文献求助10
19秒前
19秒前
雪莉完成签到 ,获得积分10
19秒前
hsh发布了新的文献求助10
19秒前
新城浪子完成签到,获得积分10
20秒前
20秒前
一只喵发布了新的文献求助10
20秒前
黄淮二傻发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157277
求助须知:如何正确求助?哪些是违规求助? 2808570
关于积分的说明 7877973
捐赠科研通 2467049
什么是DOI,文献DOI怎么找? 1313150
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919