计算机科学
图形
水准点(测量)
时态数据库
人工智能
多元统计
时间序列
编码器
深度学习
数据挖掘
机器学习
理论计算机科学
地图学
地理
操作系统
作者
Renhe Jiang,Zhaonan Wang,Jiawei Yong,Puneet Jeph,Quanjun Chen,Yasumasa Kobayashi,Xuan Song,Shintaro Fukushima,Toyotaro Suzumura
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2023-06-26
卷期号:37 (7): 8078-8086
被引量:25
标识
DOI:10.1609/aaai.v37i7.25976
摘要
Traffic forecasting as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the spatio-temporal heterogeneity and non-stationarity implied in the traffic stream, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (i.e., METR-LA and PEMS-BAY) and a new large-scale traffic speed dataset called EXPY-TKY that covers 1843 expressway road links in Tokyo. Our model outperformed the state-of-the-arts on all three datasets. Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle the road links and time slots with different patterns and be robustly adaptive to any anomalous traffic situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
科研通智能强力驱动
Strongly Powered by AbleSci AI