Experimental investigation on the performance of ceramics and CBN cutting materials during dry machining of cast iron: Modeling and optimization study using RSM, ANN, and GA

田口方法 表面粗糙度 响应面法 机械加工 陶瓷 氮化硅 材料科学 铸铁 机械工程 实验设计 多目标优化 复合材料 冶金 计算机科学 数学 工程类 机器学习 统计
作者
Boutheyna Gasmi,Mohamed Athmane Yallese,Septi Boucherit,Salim Chihaoui,Tarek Mabrouki
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (5): 1397-1422 被引量:2
标识
DOI:10.1177/09544062231187210
摘要

This study focuses on the performance evaluation of CBN and ceramic tools in dry machining of gray cast iron EN GJL-350. The machining factors taken into account during turning are: cutting speed ( Vc), feed rate ( f), depth of cut ( ap), and cutting tool material (CBN, white ceramic, mixed ceramic, and silicon nitride). The first part of this investigation concerns the evaluation of the four cutting materials performance used in terms of tool wear evolutions, 2D and 3D surface roughness and cutting forces variation according to working parameters. The second part exposes the results according to L 32 Taguchi design of experiment. Statistical treatment by ANOVA allowed to quantify the impact of the input factors on the performance parameters, namely the surface roughness ( Ra), the cutting force ( Fz), the cutting power ( Pc), and the specific cutting energy ( Ecs). The response surface methodology (RSM), and the artificial neural network (ANN) approach were adopted to develop mathematical models for predicting the different output parameters. The results of the two methods were compared and discussed. A multi-criteria optimization was performed using the desirability function (DF) approach. The genetic algorithm (GA) was also applied to find pareto fronts. The results found show that CBN is the most efficient material in terms of lower tool wear, surface roughness and cutting forces. The DF method allowed to find an optimal combination ( Vc = 660 m/min, f = 0.13 mm/rev, ap = 0.232 mm, and the CBN material) leading to a compromise between the minimization of ( Ra, Fz, Pc, and Ecs) and the maximization of (MRR). The Pareto fronts found by the (GA) method make it possible to propose a multitude of solutions according to the desired objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmmmmMM完成签到,获得积分10
刚刚
xinzhao完成签到,获得积分10
刚刚
zzz完成签到,获得积分10
1秒前
钟小熊完成签到,获得积分10
1秒前
Wang完成签到,获得积分20
1秒前
腿毛怪大叔应助fd163c采纳,获得50
1秒前
量子星尘发布了新的文献求助10
1秒前
蓝月半完成签到,获得积分10
2秒前
勤奋笑天关注了科研通微信公众号
2秒前
dalong完成签到,获得积分10
2秒前
刘shuchang完成签到 ,获得积分10
3秒前
yuanzhilong完成签到,获得积分20
3秒前
米粒儿发布了新的文献求助10
3秒前
4秒前
影zi发布了新的文献求助10
4秒前
小马甲应助lyx采纳,获得10
4秒前
4秒前
Handa完成签到,获得积分10
5秒前
核桃发布了新的文献求助10
5秒前
dbq完成签到 ,获得积分10
5秒前
Ouou完成签到 ,获得积分10
5秒前
sherlockye发布了新的文献求助10
5秒前
库洛洛完成签到,获得积分10
5秒前
kkkk完成签到,获得积分20
5秒前
Rachel完成签到,获得积分10
5秒前
莞尔完成签到 ,获得积分10
5秒前
5秒前
专注大白菜真实的钥匙完成签到,获得积分10
6秒前
努力加油煤老八完成签到 ,获得积分0
6秒前
6秒前
吃的完成签到,获得积分10
7秒前
7秒前
Ylyyyyyy发布了新的文献求助10
7秒前
8秒前
徐英杰完成签到,获得积分10
8秒前
缓慢向梦完成签到,获得积分10
8秒前
llll完成签到,获得积分10
8秒前
9秒前
星辰大海应助yuanzhilong采纳,获得10
9秒前
李爱国应助ZYX采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707637
求助须知:如何正确求助?哪些是违规求助? 5185201
关于积分的说明 15251349
捐赠科研通 4860931
什么是DOI,文献DOI怎么找? 2609076
邀请新用户注册赠送积分活动 1559819
关于科研通互助平台的介绍 1517579