Experimental investigation on the performance of ceramics and CBN cutting materials during dry machining of cast iron: Modeling and optimization study using RSM, ANN, and GA

田口方法 表面粗糙度 响应面法 机械加工 陶瓷 氮化硅 材料科学 铸铁 机械工程 实验设计 多目标优化 复合材料 冶金 计算机科学 数学 工程类 机器学习 统计
作者
Boutheyna Gasmi,Mohamed Athmane Yallese,Septi Boucherit,Salim Chihaoui,Tarek Mabrouki
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (5): 1397-1422 被引量:2
标识
DOI:10.1177/09544062231187210
摘要

This study focuses on the performance evaluation of CBN and ceramic tools in dry machining of gray cast iron EN GJL-350. The machining factors taken into account during turning are: cutting speed ( Vc), feed rate ( f), depth of cut ( ap), and cutting tool material (CBN, white ceramic, mixed ceramic, and silicon nitride). The first part of this investigation concerns the evaluation of the four cutting materials performance used in terms of tool wear evolutions, 2D and 3D surface roughness and cutting forces variation according to working parameters. The second part exposes the results according to L 32 Taguchi design of experiment. Statistical treatment by ANOVA allowed to quantify the impact of the input factors on the performance parameters, namely the surface roughness ( Ra), the cutting force ( Fz), the cutting power ( Pc), and the specific cutting energy ( Ecs). The response surface methodology (RSM), and the artificial neural network (ANN) approach were adopted to develop mathematical models for predicting the different output parameters. The results of the two methods were compared and discussed. A multi-criteria optimization was performed using the desirability function (DF) approach. The genetic algorithm (GA) was also applied to find pareto fronts. The results found show that CBN is the most efficient material in terms of lower tool wear, surface roughness and cutting forces. The DF method allowed to find an optimal combination ( Vc = 660 m/min, f = 0.13 mm/rev, ap = 0.232 mm, and the CBN material) leading to a compromise between the minimization of ( Ra, Fz, Pc, and Ecs) and the maximization of (MRR). The Pareto fronts found by the (GA) method make it possible to propose a multitude of solutions according to the desired objectives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
林沐完成签到 ,获得积分10
1秒前
1秒前
2秒前
hh发布了新的文献求助10
2秒前
希望天下0贩的0应助suiyi采纳,获得10
3秒前
FearQ7发布了新的文献求助10
3秒前
000发布了新的文献求助10
3秒前
李小九发布了新的文献求助10
4秒前
诗雨发布了新的文献求助10
4秒前
Hello应助泡面加蛋采纳,获得10
4秒前
打打应助Cfj818268采纳,获得10
5秒前
5秒前
tangyuan完成签到,获得积分10
5秒前
JamesPei应助崩溃采纳,获得10
6秒前
6秒前
打工研狗发布了新的文献求助10
6秒前
6秒前
dxwy应助dongli6536采纳,获得10
6秒前
大个应助ztt采纳,获得30
6秒前
虚幻哦哦完成签到,获得积分10
7秒前
zzzzzz完成签到,获得积分10
7秒前
liu完成签到 ,获得积分10
8秒前
8秒前
逍遥发布了新的文献求助10
9秒前
nkliupi发布了新的文献求助10
9秒前
调研昵称发布了新的文献求助10
10秒前
10秒前
10秒前
传奇3应助深情的迎海采纳,获得10
11秒前
dada发布了新的文献求助10
12秒前
12秒前
haoguo完成签到,获得积分20
12秒前
天天快乐应助April采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144039
求助须知:如何正确求助?哪些是违规求助? 2795729
关于积分的说明 7816229
捐赠科研通 2451740
什么是DOI,文献DOI怎么找? 1304659
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419