Explainable AI for Event and Anomaly Detection and Classification in Healthcare Monitoring Systems

计算机科学 异常检测 异常 人工智能 稳健性(进化) 事件(粒子物理) 可穿戴计算机 自编码 重症监护 机器学习 数据挖掘 人工神经网络 医学 生物化学 化学 物理 量子力学 精神科 重症监护医学 基因 嵌入式系统
作者
Menatalla Abououf,Shakti Singh,Rabeb Mizouni,Hadi Otrok
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 3446-3457 被引量:4
标识
DOI:10.1109/jiot.2023.3296809
摘要

Artificial intelligence (AI) has the potential to revolutionize healthcare by automating the detection and classification of events and anomalies. In the scope of this work, events and anomalies are abnormalities in the patient's data, where the former are due to a medical condition, such as a seizure or a fall, and the latter are erroneous data due to faults or malicious attacks. AI-based event and anomaly detection (EAD) and their classification can improve patient outcomes by identifying problems earlier, enabling more timely interventions while minimizing false alarms caused by anomalies. Moreover, the advancement of Medical Internet of Things (MIoT), or wearable devices, and their high processing capabilities facilitated the gathering, AI-based processing, and transmission of data, which enabled remote patient monitoring, and personalized and predictive healthcare. However, it is fundamental in healthcare to ensure the explainability of AI systems, meaning that they can provide understandable and transparent reasoning for their decisions. This article proposes an online EAD approach using a lightweight autoencoder (AE) on the MIoT. The detected abnormality is explained using KernelSHAP, an explainable AI (XAI) technique, where the explanation of the abnormality is used, by an artificial neural network (ANN), to classify it into an event or anomaly. Intensive simulations are conducted using the Medical Information Mart for Intensive Care (MIMIC) data set for various physiological data. Results showed the robustness of the proposed approach in the detection and classification of events, regardless of the percentage of the present anomalies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助123采纳,获得10
1秒前
科目三应助白华苍松采纳,获得10
2秒前
通~发布了新的文献求助10
2秒前
CipherSage应助千幻采纳,获得10
2秒前
2秒前
dddddd完成签到,获得积分10
2秒前
桂魄发布了新的文献求助10
2秒前
年轻的咖啡豆完成签到,获得积分20
3秒前
3秒前
绿洲发布了新的文献求助10
3秒前
3秒前
4秒前
aDou完成签到 ,获得积分10
4秒前
脑洞疼应助bc采纳,获得10
4秒前
NEMO发布了新的文献求助10
4秒前
李健应助mammoth采纳,获得20
4秒前
熊boy发布了新的文献求助10
4秒前
天真思雁发布了新的文献求助10
4秒前
5秒前
情怀应助蔡蔡不菜菜采纳,获得10
5秒前
shouyu29应助MADKAI采纳,获得10
6秒前
CipherSage应助MADKAI采纳,获得10
6秒前
乐乐应助MADKAI采纳,获得10
6秒前
ChangSZ应助MADKAI采纳,获得10
6秒前
乐乐应助MADKAI采纳,获得10
6秒前
小飞七应助MADKAI采纳,获得10
6秒前
Akim应助MADKAI采纳,获得20
6秒前
科研通AI5应助MADKAI采纳,获得10
6秒前
充电宝应助MADKAI采纳,获得10
6秒前
buno应助MADKAI采纳,获得10
6秒前
6秒前
小唐完成签到 ,获得积分0
8秒前
思源应助年轻的咖啡豆采纳,获得10
8秒前
10秒前
科研通AI5应助junc采纳,获得20
10秒前
绿洲完成签到,获得积分10
11秒前
11秒前
yf_zhu发布了新的文献求助10
11秒前
正直亦旋发布了新的文献求助10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762