Explainable AI for Event and Anomaly Detection and Classification in Healthcare Monitoring Systems

计算机科学 异常检测 异常 人工智能 稳健性(进化) 事件(粒子物理) 可穿戴计算机 自编码 重症监护 机器学习 数据挖掘 人工神经网络 医学 基因 精神科 物理 嵌入式系统 量子力学 重症监护医学 化学 生物化学
作者
Menatalla Abououf,Shakti Singh,Rabeb Mizouni,Hadi Otrok
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 3446-3457 被引量:4
标识
DOI:10.1109/jiot.2023.3296809
摘要

Artificial intelligence (AI) has the potential to revolutionize healthcare by automating the detection and classification of events and anomalies. In the scope of this work, events and anomalies are abnormalities in the patient's data, where the former are due to a medical condition, such as a seizure or a fall, and the latter are erroneous data due to faults or malicious attacks. AI-based event and anomaly detection (EAD) and their classification can improve patient outcomes by identifying problems earlier, enabling more timely interventions while minimizing false alarms caused by anomalies. Moreover, the advancement of Medical Internet of Things (MIoT), or wearable devices, and their high processing capabilities facilitated the gathering, AI-based processing, and transmission of data, which enabled remote patient monitoring, and personalized and predictive healthcare. However, it is fundamental in healthcare to ensure the explainability of AI systems, meaning that they can provide understandable and transparent reasoning for their decisions. This article proposes an online EAD approach using a lightweight autoencoder (AE) on the MIoT. The detected abnormality is explained using KernelSHAP, an explainable AI (XAI) technique, where the explanation of the abnormality is used, by an artificial neural network (ANN), to classify it into an event or anomaly. Intensive simulations are conducted using the Medical Information Mart for Intensive Care (MIMIC) data set for various physiological data. Results showed the robustness of the proposed approach in the detection and classification of events, regardless of the percentage of the present anomalies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WD发布了新的文献求助10
1秒前
超越好帅完成签到,获得积分20
2秒前
高高发布了新的文献求助10
4秒前
5秒前
Www完成签到,获得积分10
6秒前
DDDDD发布了新的文献求助10
7秒前
7秒前
菲晗子完成签到,获得积分10
8秒前
深情安青应助酷炫的香魔采纳,获得10
8秒前
8秒前
研友_8RlQ2n完成签到,获得积分10
10秒前
如意秋珊发布了新的文献求助10
11秒前
Adel完成签到 ,获得积分10
11秒前
mark完成签到,获得积分10
11秒前
欢檬应助祥子的骆驼采纳,获得10
11秒前
无奈的幻雪完成签到,获得积分20
13秒前
思源应助dearlu采纳,获得10
14秒前
14秒前
水清木华发布了新的文献求助20
14秒前
舒心莫言完成签到,获得积分10
14秒前
111111完成签到,获得积分10
16秒前
JamesPei应助zzz采纳,获得10
16秒前
高高完成签到,获得积分10
19秒前
sxpab完成签到,获得积分10
19秒前
笔芯完成签到,获得积分10
20秒前
慢半拍完成签到,获得积分10
21秒前
23秒前
23秒前
23秒前
confident发布了新的文献求助10
24秒前
慢半拍发布了新的文献求助10
24秒前
今后应助izzhan采纳,获得10
25秒前
MJX完成签到,获得积分10
25秒前
25秒前
26秒前
27秒前
传奇3应助Zarc采纳,获得10
27秒前
哈哈完成签到,获得积分10
27秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991967
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260597
捐赠科研通 3272377
什么是DOI,文献DOI怎么找? 1805789
邀请新用户注册赠送积分活动 882660
科研通“疑难数据库(出版商)”最低求助积分说明 809425