FTCM: Frequency-Temporal Collaborative Module for Efficient 3D Human Pose Estimation in Video

姿势 计算机科学 频域 人工智能 特征(语言学) 模式识别(心理学) 计算机视觉 语言学 哲学
作者
Zhenhua Tang,Yanbin Hao,Jia Li,Richang Hong
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 911-923 被引量:4
标识
DOI:10.1109/tcsvt.2023.3286402
摘要

Capturing cross-pose correlation from a sequence of frame-level 2D poses is essential for 3D human pose estimation (3D-HPE) in the video. Recent studies have shown the promising potential of modeling the pose relation with feature-mixing operations on the temporal domain. However, they seldom consider the interaction across poses in the frequency domain. This paper studies a Frequency-Temporal Collaborative Module (FTCM) to explore the feasibility of encoding the cross-pose correlations in both frequency and temporal domains. FTCM aims to jointly capture the global and local cross-pose correlations with a more lightweight network model. Specifically, FTCM splits the pose features into two groups along the channel dimension and separately models the frequency and temporal interactions across poses with different feature-mixing operations in parallel. To achieve this goal, we purposely design two pose-mixing units, i.e., the frequency pose-mixing (FPM) and the temporal pose-mixing (TPM). Particularly, FPM is designed to reap the global correlations among different pose frequencies with the representation obtained by converting the original pose signals with Fast Fourier transform (FFT). Unlike the pose-mixing used by previous methods like Transformers that influences an individual pose with all other poses, TPM locally calibrates the pose with dynamics aggregated within several adjacent poses in the temporal domain, explicitly weighting neighboring poses more with respect to the far-away ones so as to enforce a strict locality constraint. Besides, the group strategy significantly reduces the model complexity. To verify the effectiveness of FTCM, we conduct extensive experiments on two benchmarks (i.e., Human3.6M and MPI-INF-3DHP). Experimental results not only exhibit favorable accuracy/complexity trade-offs of our FTCM but also show superior or comparable performance to state-of-the-art methods on both datasets. The code and model are publicly available at: https://github.com/zhenhuat/FTCM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZ应助Henry采纳,获得10
1秒前
1秒前
窗窗窗雨完成签到,获得积分10
1秒前
小安完成签到,获得积分10
1秒前
Ryan完成签到 ,获得积分10
2秒前
liu完成签到,获得积分10
2秒前
lidagou发布了新的文献求助10
3秒前
搬砖美少女完成签到,获得积分10
3秒前
wxt完成签到,获得积分10
4秒前
5秒前
隔壁的邻家小兴完成签到,获得积分10
5秒前
星辰大海应助拼搏vv采纳,获得10
6秒前
程传勇发布了新的文献求助10
6秒前
chx123完成签到,获得积分10
7秒前
7秒前
8秒前
葛稀完成签到,获得积分10
8秒前
你好完成签到,获得积分10
9秒前
HFW完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
orixero应助lidagou采纳,获得10
13秒前
慕青应助坦率的之卉采纳,获得10
14秒前
星之发布了新的文献求助10
14秒前
14秒前
求助发布了新的文献求助10
14秒前
JamesPei应助芳芳采纳,获得10
16秒前
孙刚完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
顾矜应助巴山石也采纳,获得10
20秒前
彭于晏应助碧蓝青梦采纳,获得10
21秒前
rodrisk完成签到 ,获得积分10
21秒前
21秒前
Sunny发布了新的文献求助10
22秒前
22秒前
yliu完成签到,获得积分10
23秒前
25秒前
heisebeileimao应助程传勇采纳,获得200
25秒前
研友_Ljb0qL完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224