FTCM: Frequency-Temporal Collaborative Module for Efficient 3D Human Pose Estimation in Video

姿势 计算机科学 频域 人工智能 特征(语言学) 模式识别(心理学) 计算机视觉 哲学 语言学
作者
Zhenhua Tang,Yanbin Hao,Jia Li,Richang Hong
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 911-923 被引量:4
标识
DOI:10.1109/tcsvt.2023.3286402
摘要

Capturing cross-pose correlation from a sequence of frame-level 2D poses is essential for 3D human pose estimation (3D-HPE) in the video. Recent studies have shown the promising potential of modeling the pose relation with feature-mixing operations on the temporal domain. However, they seldom consider the interaction across poses in the frequency domain. This paper studies a Frequency-Temporal Collaborative Module (FTCM) to explore the feasibility of encoding the cross-pose correlations in both frequency and temporal domains. FTCM aims to jointly capture the global and local cross-pose correlations with a more lightweight network model. Specifically, FTCM splits the pose features into two groups along the channel dimension and separately models the frequency and temporal interactions across poses with different feature-mixing operations in parallel. To achieve this goal, we purposely design two pose-mixing units, i.e., the frequency pose-mixing (FPM) and the temporal pose-mixing (TPM). Particularly, FPM is designed to reap the global correlations among different pose frequencies with the representation obtained by converting the original pose signals with Fast Fourier transform (FFT). Unlike the pose-mixing used by previous methods like Transformers that influences an individual pose with all other poses, TPM locally calibrates the pose with dynamics aggregated within several adjacent poses in the temporal domain, explicitly weighting neighboring poses more with respect to the far-away ones so as to enforce a strict locality constraint. Besides, the group strategy significantly reduces the model complexity. To verify the effectiveness of FTCM, we conduct extensive experiments on two benchmarks (i.e., Human3.6M and MPI-INF-3DHP). Experimental results not only exhibit favorable accuracy/complexity trade-offs of our FTCM but also show superior or comparable performance to state-of-the-art methods on both datasets. The code and model are publicly available at: https://github.com/zhenhuat/FTCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zigzag完成签到,获得积分10
1秒前
xsx完成签到 ,获得积分10
1秒前
ding应助草莓奶昔采纳,获得10
1秒前
lin yan完成签到 ,获得积分10
1秒前
大聪明发布了新的文献求助10
2秒前
3秒前
lf-leo完成签到,获得积分10
3秒前
阿辉完成签到,获得积分10
3秒前
大个应助cc采纳,获得10
3秒前
vae完成签到,获得积分10
3秒前
深情安青应助杨娜采纳,获得10
4秒前
啦啦应助虎虎虎采纳,获得20
4秒前
5秒前
kiminonawa应助白路采纳,获得10
5秒前
京言完成签到,获得积分10
6秒前
6秒前
6秒前
GGB完成签到,获得积分20
6秒前
6秒前
Jennie完成签到,获得积分10
7秒前
多多发布了新的文献求助10
7秒前
huihui完成签到,获得积分10
8秒前
9秒前
9秒前
misihaoyu完成签到,获得积分10
10秒前
墨菲完成签到,获得积分10
10秒前
科目三应助彩色橘子采纳,获得10
10秒前
zz完成签到,获得积分10
10秒前
10秒前
jzh完成签到 ,获得积分10
10秒前
研友_89KGOn发布了新的文献求助10
11秒前
我是哑巴发布了新的文献求助10
11秒前
王天天完成签到 ,获得积分10
11秒前
12秒前
英俊的铭应助Jennie采纳,获得10
12秒前
小小邹完成签到,获得积分10
13秒前
13秒前
小靖哥哥发布了新的文献求助10
15秒前
受伤书文完成签到,获得积分10
15秒前
上官若男应助马库拉格采纳,获得10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167644
求助须知:如何正确求助?哪些是违规求助? 2819109
关于积分的说明 7924992
捐赠科研通 2478979
什么是DOI,文献DOI怎么找? 1320569
科研通“疑难数据库(出版商)”最低求助积分说明 632836
版权声明 602443