FTCM: Frequency-Temporal Collaborative Module for Efficient 3D Human Pose Estimation in Video

姿势 计算机科学 频域 人工智能 特征(语言学) 模式识别(心理学) 计算机视觉 语言学 哲学
作者
Zhenhua Tang,Yanbin Hao,Jia Li,Richang Hong
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 911-923 被引量:4
标识
DOI:10.1109/tcsvt.2023.3286402
摘要

Capturing cross-pose correlation from a sequence of frame-level 2D poses is essential for 3D human pose estimation (3D-HPE) in the video. Recent studies have shown the promising potential of modeling the pose relation with feature-mixing operations on the temporal domain. However, they seldom consider the interaction across poses in the frequency domain. This paper studies a Frequency-Temporal Collaborative Module (FTCM) to explore the feasibility of encoding the cross-pose correlations in both frequency and temporal domains. FTCM aims to jointly capture the global and local cross-pose correlations with a more lightweight network model. Specifically, FTCM splits the pose features into two groups along the channel dimension and separately models the frequency and temporal interactions across poses with different feature-mixing operations in parallel. To achieve this goal, we purposely design two pose-mixing units, i.e., the frequency pose-mixing (FPM) and the temporal pose-mixing (TPM). Particularly, FPM is designed to reap the global correlations among different pose frequencies with the representation obtained by converting the original pose signals with Fast Fourier transform (FFT). Unlike the pose-mixing used by previous methods like Transformers that influences an individual pose with all other poses, TPM locally calibrates the pose with dynamics aggregated within several adjacent poses in the temporal domain, explicitly weighting neighboring poses more with respect to the far-away ones so as to enforce a strict locality constraint. Besides, the group strategy significantly reduces the model complexity. To verify the effectiveness of FTCM, we conduct extensive experiments on two benchmarks (i.e., Human3.6M and MPI-INF-3DHP). Experimental results not only exhibit favorable accuracy/complexity trade-offs of our FTCM but also show superior or comparable performance to state-of-the-art methods on both datasets. The code and model are publicly available at: https://github.com/zhenhuat/FTCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助过儿采纳,获得10
刚刚
JiangyingYu发布了新的文献求助10
1秒前
科研小白完成签到,获得积分10
2秒前
大个应助小小采纳,获得10
2秒前
3秒前
3秒前
糟糕的愚志完成签到,获得积分20
4秒前
jelifo完成签到,获得积分10
4秒前
凸迩丝儿发布了新的文献求助10
4秒前
大模型应助洋葱采纳,获得10
4秒前
5秒前
无风完成签到 ,获得积分10
5秒前
5秒前
6秒前
星辰大海应助汤汤采纳,获得10
6秒前
Ava应助樱桃小丸子采纳,获得10
6秒前
nefu biology发布了新的文献求助10
7秒前
7秒前
SONNG发布了新的文献求助10
7秒前
害怕的过客完成签到,获得积分10
8秒前
8秒前
Orange应助CA采纳,获得10
8秒前
大力的诗蕾完成签到 ,获得积分10
8秒前
9秒前
9秒前
m彬m彬发布了新的文献求助10
9秒前
步六孤完成签到,获得积分10
9秒前
刘zy完成签到,获得积分10
9秒前
ug完成签到,获得积分10
10秒前
10秒前
Rong发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
拼搏雪糕完成签到 ,获得积分10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5404821
求助须知:如何正确求助?哪些是违规求助? 4523256
关于积分的说明 14092587
捐赠科研通 4436874
什么是DOI,文献DOI怎么找? 2435324
邀请新用户注册赠送积分活动 1427610
关于科研通互助平台的介绍 1405985