亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FTCM: Frequency-Temporal Collaborative Module for Efficient 3D Human Pose Estimation in Video

姿势 计算机科学 频域 人工智能 特征(语言学) 模式识别(心理学) 计算机视觉 语言学 哲学
作者
Zhenhua Tang,Yanbin Hao,Jia Li,Richang Hong
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 911-923 被引量:4
标识
DOI:10.1109/tcsvt.2023.3286402
摘要

Capturing cross-pose correlation from a sequence of frame-level 2D poses is essential for 3D human pose estimation (3D-HPE) in the video. Recent studies have shown the promising potential of modeling the pose relation with feature-mixing operations on the temporal domain. However, they seldom consider the interaction across poses in the frequency domain. This paper studies a Frequency-Temporal Collaborative Module (FTCM) to explore the feasibility of encoding the cross-pose correlations in both frequency and temporal domains. FTCM aims to jointly capture the global and local cross-pose correlations with a more lightweight network model. Specifically, FTCM splits the pose features into two groups along the channel dimension and separately models the frequency and temporal interactions across poses with different feature-mixing operations in parallel. To achieve this goal, we purposely design two pose-mixing units, i.e., the frequency pose-mixing (FPM) and the temporal pose-mixing (TPM). Particularly, FPM is designed to reap the global correlations among different pose frequencies with the representation obtained by converting the original pose signals with Fast Fourier transform (FFT). Unlike the pose-mixing used by previous methods like Transformers that influences an individual pose with all other poses, TPM locally calibrates the pose with dynamics aggregated within several adjacent poses in the temporal domain, explicitly weighting neighboring poses more with respect to the far-away ones so as to enforce a strict locality constraint. Besides, the group strategy significantly reduces the model complexity. To verify the effectiveness of FTCM, we conduct extensive experiments on two benchmarks (i.e., Human3.6M and MPI-INF-3DHP). Experimental results not only exhibit favorable accuracy/complexity trade-offs of our FTCM but also show superior or comparable performance to state-of-the-art methods on both datasets. The code and model are publicly available at: https://github.com/zhenhuat/FTCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
量子星尘发布了新的文献求助10
9秒前
唐泽雪穗应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
唐泽雪穗应助科研通管家采纳,获得10
11秒前
Alan弟弟发布了新的文献求助10
14秒前
47秒前
satsuki发布了新的文献求助10
52秒前
54秒前
敏敏9813完成签到,获得积分10
55秒前
星河发布了新的文献求助30
1分钟前
1分钟前
敏敏9813发布了新的文献求助10
1分钟前
1分钟前
阔达冰兰完成签到,获得积分20
1分钟前
阔达冰兰发布了新的文献求助10
1分钟前
玖玖完成签到 ,获得积分10
1分钟前
天天快乐应助satsuki采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得30
2分钟前
NexusExplorer应助星河采纳,获得10
2分钟前
调皮芫完成签到,获得积分20
2分钟前
dream完成签到 ,获得积分10
2分钟前
2分钟前
Nidehuogef发布了新的文献求助10
2分钟前
李爱国应助Nidehuogef采纳,获得10
3分钟前
hhdr完成签到 ,获得积分10
3分钟前
打打应助满锅采纳,获得10
4分钟前
英英的英完成签到 ,获得积分10
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
orixero应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
今后应助苹果诗珊采纳,获得10
4分钟前
4分钟前
满锅发布了新的文献求助10
4分钟前
科研通AI5应助ccccx采纳,获得10
4分钟前
naomic发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077566
求助须知:如何正确求助?哪些是违规求助? 4296590
关于积分的说明 13387183
捐赠科研通 4119064
什么是DOI,文献DOI怎么找? 2255676
邀请新用户注册赠送积分活动 1260033
关于科研通互助平台的介绍 1193411