FTCM: Frequency-Temporal Collaborative Module for Efficient 3D Human Pose Estimation in Video

姿势 计算机科学 频域 人工智能 特征(语言学) 模式识别(心理学) 计算机视觉 语言学 哲学
作者
Zhenhua Tang,Yanbin Hao,Jia Li,Richang Hong
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 911-923 被引量:4
标识
DOI:10.1109/tcsvt.2023.3286402
摘要

Capturing cross-pose correlation from a sequence of frame-level 2D poses is essential for 3D human pose estimation (3D-HPE) in the video. Recent studies have shown the promising potential of modeling the pose relation with feature-mixing operations on the temporal domain. However, they seldom consider the interaction across poses in the frequency domain. This paper studies a Frequency-Temporal Collaborative Module (FTCM) to explore the feasibility of encoding the cross-pose correlations in both frequency and temporal domains. FTCM aims to jointly capture the global and local cross-pose correlations with a more lightweight network model. Specifically, FTCM splits the pose features into two groups along the channel dimension and separately models the frequency and temporal interactions across poses with different feature-mixing operations in parallel. To achieve this goal, we purposely design two pose-mixing units, i.e., the frequency pose-mixing (FPM) and the temporal pose-mixing (TPM). Particularly, FPM is designed to reap the global correlations among different pose frequencies with the representation obtained by converting the original pose signals with Fast Fourier transform (FFT). Unlike the pose-mixing used by previous methods like Transformers that influences an individual pose with all other poses, TPM locally calibrates the pose with dynamics aggregated within several adjacent poses in the temporal domain, explicitly weighting neighboring poses more with respect to the far-away ones so as to enforce a strict locality constraint. Besides, the group strategy significantly reduces the model complexity. To verify the effectiveness of FTCM, we conduct extensive experiments on two benchmarks (i.e., Human3.6M and MPI-INF-3DHP). Experimental results not only exhibit favorable accuracy/complexity trade-offs of our FTCM but also show superior or comparable performance to state-of-the-art methods on both datasets. The code and model are publicly available at: https://github.com/zhenhuat/FTCM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万1发布了新的文献求助10
1秒前
熊熊完成签到,获得积分10
1秒前
1秒前
2秒前
牛马完成签到,获得积分10
2秒前
Owen应助Judy采纳,获得10
2秒前
彭于晏应助dian采纳,获得10
3秒前
5秒前
5秒前
qingfengnai完成签到,获得积分10
5秒前
6秒前
李震完成签到,获得积分10
6秒前
6秒前
6秒前
Akim应助Alan采纳,获得10
6秒前
证明发布了新的文献求助10
6秒前
FRANKFANG完成签到,获得积分10
7秒前
7秒前
Akim应助呵呜哎辉采纳,获得10
7秒前
7秒前
合适的平安完成签到,获得积分10
8秒前
没有昵称完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
就是我发布了新的文献求助10
9秒前
酷波er应助Nano采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
田哲完成签到 ,获得积分10
9秒前
胖箭鱼发布了新的文献求助10
11秒前
11秒前
hearz发布了新的文献求助10
12秒前
帅气航空发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
屋顶橙子味完成签到 ,获得积分10
12秒前
doctorshg完成签到,获得积分10
12秒前
王艺霖发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233