亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FTCM: Frequency-Temporal Collaborative Module for Efficient 3D Human Pose Estimation in Video

姿势 计算机科学 频域 人工智能 特征(语言学) 模式识别(心理学) 计算机视觉 语言学 哲学
作者
Zhenhua Tang,Yanbin Hao,Jia Li,Richang Hong
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 911-923 被引量:4
标识
DOI:10.1109/tcsvt.2023.3286402
摘要

Capturing cross-pose correlation from a sequence of frame-level 2D poses is essential for 3D human pose estimation (3D-HPE) in the video. Recent studies have shown the promising potential of modeling the pose relation with feature-mixing operations on the temporal domain. However, they seldom consider the interaction across poses in the frequency domain. This paper studies a Frequency-Temporal Collaborative Module (FTCM) to explore the feasibility of encoding the cross-pose correlations in both frequency and temporal domains. FTCM aims to jointly capture the global and local cross-pose correlations with a more lightweight network model. Specifically, FTCM splits the pose features into two groups along the channel dimension and separately models the frequency and temporal interactions across poses with different feature-mixing operations in parallel. To achieve this goal, we purposely design two pose-mixing units, i.e., the frequency pose-mixing (FPM) and the temporal pose-mixing (TPM). Particularly, FPM is designed to reap the global correlations among different pose frequencies with the representation obtained by converting the original pose signals with Fast Fourier transform (FFT). Unlike the pose-mixing used by previous methods like Transformers that influences an individual pose with all other poses, TPM locally calibrates the pose with dynamics aggregated within several adjacent poses in the temporal domain, explicitly weighting neighboring poses more with respect to the far-away ones so as to enforce a strict locality constraint. Besides, the group strategy significantly reduces the model complexity. To verify the effectiveness of FTCM, we conduct extensive experiments on two benchmarks (i.e., Human3.6M and MPI-INF-3DHP). Experimental results not only exhibit favorable accuracy/complexity trade-offs of our FTCM but also show superior or comparable performance to state-of-the-art methods on both datasets. The code and model are publicly available at: https://github.com/zhenhuat/FTCM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常以云完成签到 ,获得积分10
27秒前
30秒前
41秒前
44秒前
傅嘉庆发布了新的文献求助10
45秒前
小白发布了新的文献求助10
50秒前
1分钟前
不安青牛应助zhangxiaoqing采纳,获得10
1分钟前
小马甲应助傅嘉庆采纳,获得10
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
1分钟前
xxi发布了新的文献求助10
2分钟前
大模型应助Chloe采纳,获得10
2分钟前
小白完成签到 ,获得积分10
2分钟前
爆米花应助啦啦啦采纳,获得10
2分钟前
Jasper应助哈皮波采纳,获得10
2分钟前
2分钟前
哈皮波发布了新的文献求助10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Chloe发布了新的文献求助10
2分钟前
开放道天发布了新的文献求助30
3分钟前
3分钟前
3分钟前
鱼鱼片片发布了新的文献求助10
3分钟前
啦啦啦发布了新的文献求助10
3分钟前
852应助开放道天采纳,获得10
3分钟前
啦啦啦完成签到,获得积分10
3分钟前
bbbbb发布了新的文献求助30
4分钟前
bbbbb完成签到,获得积分10
4分钟前
wwe完成签到,获得积分10
4分钟前
不能吃太饱完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
不安青牛应助zhangxiaoqing采纳,获得10
5分钟前
6分钟前
ffff完成签到 ,获得积分10
6分钟前
田様应助科研通管家采纳,获得10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681725
求助须知:如何正确求助?哪些是违规求助? 5012386
关于积分的说明 15176015
捐赠科研通 4841250
什么是DOI,文献DOI怎么找? 2595040
邀请新用户注册赠送积分活动 1548025
关于科研通互助平台的介绍 1506079