Unknown Traffic Recognition Based on Multi-Feature Fusion and Incremental Learning

计算机科学 交通分类 数据挖掘 人工智能 机器学习 聚类分析 交通生成模型 入侵检测系统 加密 互联网 实时计算 计算机网络 万维网
作者
Junyi Liu,Jiarong Wang,Yu‐Ping Tian,Fazhi Qi,Gang Chen
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (13): 7649-7649
标识
DOI:10.3390/app13137649
摘要

Accurate classification and identification of Internet traffic are crucial for maintaining network security. However, unknown network traffic in the real world can affect the accuracy of current machine learning models, reducing the efficiency of traffic classification. Existing unknown traffic classification algorithms are unable to optimize traffic features and require the entire system to be retrained each time new traffic data are collected. This results in low recognition efficiency, making the algoritms unsuitable for real-time application detection. To solve the above issues, we suggest a multi-feature fusion-based incremental technique for detecting unknown traffic in this paper. The approach employs a multiple-channel parallel architecture to extract temporal and spatial traffic features. It then uses the mRMR algorithm to rank and fuse the features extracted from each channel to overcome the issue of redundant encrypted traffic features. In addition, we combine the density-ratio-based clustering algorithm to identify the unknown traffic features and update the model via incremental learning. The cassifier enables real-time classification of known and unknown traffic by learning newly acquired class knowledge. Our model can identify encrypted unknown Internet traffic with at least 86% accuracy in various scenarios, using the public ISCX-VPN-Tor datasets. Furthermore, it achieves 90% accuracy on the intrusion detection dataset NSL-KDD. In our self-collected dataset from a real-world environment, the accuracy of our model exceeds 96%. This work offers a novel method for identifying unknown network traffic, contributing to the security preservation of network environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
马里奥爱科研完成签到,获得积分10
2秒前
奇异物质应助笨笨青筠采纳,获得10
2秒前
小蘑菇应助assholechea采纳,获得10
3秒前
jinjun发布了新的文献求助10
3秒前
4秒前
xkkk完成签到 ,获得积分10
4秒前
bkagyin应助傢誠采纳,获得10
5秒前
烟花应助油柑美式采纳,获得10
6秒前
6秒前
9秒前
Yang完成签到,获得积分10
11秒前
几携发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
不懂白发布了新的文献求助10
15秒前
慕青应助洁净的孤萍采纳,获得10
15秒前
17秒前
油柑美式发布了新的文献求助10
18秒前
18秒前
18秒前
周聪发布了新的文献求助10
19秒前
大白菜完成签到 ,获得积分10
19秒前
arya完成签到 ,获得积分10
21秒前
hao完成签到,获得积分10
22秒前
傢誠发布了新的文献求助10
22秒前
小马甲应助善良的靖易采纳,获得10
22秒前
24秒前
24秒前
领导范儿应助飘逸的傲霜采纳,获得10
26秒前
26秒前
26秒前
云峰发布了新的文献求助10
32秒前
感动马里奥完成签到,获得积分10
32秒前
lll发布了新的文献求助10
33秒前
setid完成签到 ,获得积分10
34秒前
39秒前
云峰完成签到,获得积分10
40秒前
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673735
求助须知:如何正确求助?哪些是违规求助? 3229198
关于积分的说明 9784642
捐赠科研通 2939771
什么是DOI,文献DOI怎么找? 1611366
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736326