Knowledge-Induced Multiple Kernel Fuzzy Clustering

聚类分析 模糊聚类 计算机科学 数据挖掘 人工智能 模糊逻辑 核(代数) 知识抽取 领域知识 数据流聚类 相关聚类 模式识别(心理学) CURE数据聚类算法 机器学习 数学 组合数学
作者
Yiming Tang,Zhifu Pan,Xianghui Hu,Witold Pedrycz,Renhao Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 14838-14855 被引量:41
标识
DOI:10.1109/tpami.2023.3298629
摘要

The introduction of domain knowledge opens new horizons to fuzzy clustering. Then knowledge-driven and data-driven fuzzy clustering methods come into being. To address the challenges of inadequate extraction mechanism and imperfect fusion mode in such class of methods, we propose the Knowledge-induced Multiple Kernel Fuzzy Clustering (KMKFC) algorithm. First, to extract knowledge points better, the Relative Density-based Knowledge Extraction (RDKE) method is proposed to extract high-density knowledge points close to cluster centers of real data structure, and provide initialized cluster centers. Moreover, the multiple kernel mechanism is introduced to improve the adaptability of clustering algorithm and map data to high-dimensional space, so as to better discover the differences between the data and obtain superior clustering results. Second, knowledge points generated by RDKE are integrated into KMKFC through a knowledge-influence matrix to guide the iterative process of KMKFC. Third, we also provide a strategy of automatically obtaining knowledge points, and thus propose the RDKE with Automatic knowledge acquisition (RDKE-A) method and the corresponding KMKFC-A algorithm. Then we prove the convergence of KMKFC and KMKFC-A. Finally, experimental studies demonstrate that the KMKFC and KMKFC-A algorithms perform better than thirteen comparison algorithms with regard to four evaluation indexes and the convergence speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助液氧采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
ro关注了科研通微信公众号
2秒前
荷戟执子手完成签到,获得积分10
2秒前
3秒前
落后的嚣发布了新的文献求助10
3秒前
Enko完成签到,获得积分10
3秒前
5秒前
5秒前
6666666666完成签到 ,获得积分10
5秒前
6秒前
wuhu发布了新的文献求助10
7秒前
烟花应助老仙翁采纳,获得10
7秒前
7秒前
张大宝发布了新的文献求助10
8秒前
9秒前
9秒前
无奈萝发布了新的文献求助10
9秒前
11秒前
小蘑菇应助Chloe采纳,获得10
11秒前
白白凝发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
我爱罗完成签到,获得积分10
13秒前
xxxxx炒菜完成签到,获得积分10
13秒前
13秒前
13秒前
乐乐应助Lanx采纳,获得10
13秒前
Janson发布了新的文献求助10
13秒前
中科院饲养员完成签到,获得积分10
13秒前
taozjju完成签到,获得积分10
13秒前
wyn完成签到,获得积分10
14秒前
14秒前
xxxxx炒菜发布了新的文献求助10
15秒前
cjj给cjj的求助进行了留言
16秒前
16秒前
任性雁风发布了新的文献求助10
18秒前
OhoOu完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785163
求助须知:如何正确求助?哪些是违规求助? 5686456
关于积分的说明 15466952
捐赠科研通 4914293
什么是DOI,文献DOI怎么找? 2645133
邀请新用户注册赠送积分活动 1592960
关于科研通互助平台的介绍 1547317