Spatial-MGCN: a novel multi-view graph convolutional network for identifying spatial domains with attention mechanism

计算机科学 空间分析 推论 空间语境意识 人工智能 图形 编码器 模式识别(心理学) 背景(考古学) 理论计算机科学 数学 生物 统计 操作系统 古生物学
作者
Bo Wang,Jiawei Luo,Ying Liu,Wanwan Shi,Zehao Xiong,Cong Shen,Yahui Long
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5)
标识
DOI:10.1093/bib/bbad262
摘要

Recent advances in spatial transcriptomics technologies have enabled gene expression profiles while preserving spatial context. Accurately identifying spatial domains is crucial for downstream analysis and it requires the effective integration of gene expression profiles and spatial information. While increasingly computational methods have been developed for spatial domain detection, most of them cannot adaptively learn the complex relationship between gene expression and spatial information, leading to sub-optimal performance.To overcome these challenges, we propose a novel deep learning method named Spatial-MGCN for identifying spatial domains, which is a Multi-view Graph Convolutional Network (GCN) with attention mechanism. We first construct two neighbor graphs using gene expression profiles and spatial information, respectively. Then, a multi-view GCN encoder is designed to extract unique embeddings from both the feature and spatial graphs, as well as their shared embeddings by combining both graphs. Finally, a zero-inflated negative binomial decoder is used to reconstruct the original expression matrix by capturing the global probability distribution of gene expression profiles. Moreover, Spatial-MGCN incorporates a spatial regularization constraint into the features learning to preserve spatial neighbor information in an end-to-end manner. The experimental results show that Spatial-MGCN outperforms state-of-the-art methods consistently in several tasks, including spatial clustering and trajectory inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yys10l完成签到,获得积分10
刚刚
彭于晏应助ddd采纳,获得10
刚刚
刚刚
轻松的兔子完成签到,获得积分10
1秒前
1秒前
了0完成签到 ,获得积分10
1秒前
苏氨酸应助小郭采纳,获得10
1秒前
1秒前
Emma发布了新的文献求助10
2秒前
huishi105发布了新的文献求助10
3秒前
3秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
收拾收拾应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
916应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
yar应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
收拾收拾应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
坦率耳机应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得20
6秒前
916应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
hohn完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650