A machine learning model for predicting hepatocellular carcinoma risk in patients with chronic hepatitis B

肝细胞癌 恩替卡韦 医学 队列 四分位间距 内科学 慢性肝炎 乙型肝炎 入射(几何) 接收机工作特性 乙型肝炎病毒 累积发病率 机器学习 风险模型 肿瘤科 胃肠病学 算法 免疫学 计算机科学 拉米夫定 病毒 数学 几何学 风险分析(工程)
作者
Hye Won Lee,Hwiyoung Kim,T. K. Park,Soo Young Park,Young Eun Chon,Yeon Seok Seo,Jae Seung Lee,Jun Yong Park,Do Young Kim,Sang Hoon Ahn,Beom Kyung Kim,Seung Up Kim
出处
期刊:Liver International [Wiley]
卷期号:43 (8): 1813-1821 被引量:7
标识
DOI:10.1111/liv.15597
摘要

Abstract Background Machine learning (ML) algorithms can be used to overcome the prognostic performance limitations of conventional hepatocellular carcinoma (HCC) risk models. We established and validated an ML‐based HCC predictive model optimized for patients with chronic hepatitis B (CHB) infections receiving antiviral therapy (AVT). Methods Treatment‐naïve CHB patients who were started entecavir (ETV) or tenofovir disoproxil fumarate (TDF) were enrolled. We used a training cohort ( n = 960) to develop a novel ML model that predicted HCC development within 5 years and validated the model using an independent external cohort ( n = 1937). ML algorithms consider all potential interactions and do not use predefined hypotheses. Results The mean age of the patients in the training cohort was 48 years, and most patients (68.9%) were men. During the median 59.3 (interquartile range 45.8–72.3) months of follow‐up, 69 (7.2%) patients developed HCC. Our ML‐based HCC risk prediction model had an area under the receiver‐operating characteristic curve (AUC) of 0.900, which was better than the AUCs of CAMD (0.778) and REAL B (0.772) (both p < .05). The better performance of our model was maintained (AUC = 0.872 vs. 0.788 for CAMD and 0.801 for REAL B) in the validation cohort. Using cut‐off probabilities of 0.3 and 0.5, the cumulative incidence of HCC development differed significantly among the three risk groups ( p < .001). Conclusions Our new ML model performed better than models in terms of predicting the risk of HCC development in CHB patients receiving AVT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wwss发布了新的文献求助10
1秒前
SYLH应助朴素的元风采纳,获得10
1秒前
2秒前
77发布了新的文献求助10
3秒前
4秒前
kook完成签到 ,获得积分10
4秒前
张城豪发布了新的文献求助10
5秒前
6秒前
老阳发布了新的文献求助10
6秒前
SciGPT应助胆小菇采纳,获得10
7秒前
7秒前
8秒前
养鸟的人完成签到,获得积分10
8秒前
感动煎饼发布了新的文献求助10
9秒前
10秒前
斯文败类应助肥肥采纳,获得10
10秒前
11秒前
czc发布了新的文献求助10
11秒前
筱筱完成签到,获得积分10
11秒前
12秒前
斑比完成签到,获得积分10
12秒前
彭于晏应助懒羊羊采纳,获得10
14秒前
14秒前
JamesPei应助知性的采珊采纳,获得10
14秒前
Riggle G完成签到,获得积分10
15秒前
今后应助菠萝冰棒采纳,获得10
16秒前
17秒前
18秒前
21秒前
可耐的乐荷完成签到,获得积分10
21秒前
22秒前
22秒前
靴子完成签到,获得积分10
22秒前
Dreames发布了新的文献求助10
22秒前
半柚应助找找采纳,获得10
23秒前
大模型应助找找采纳,获得10
23秒前
科研通AI5应助墨染星辰采纳,获得10
23秒前
大个应助Bin采纳,获得10
25秒前
77完成签到,获得积分20
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882