Numerical investigation of the interaction between a converging shock wave and an offset cylindrical bubble containing different gases

冲击波 物理 气泡 移动冲击 机械 斜激波 休克(循环) 冲击管 马赫数 冲击波 医学 内科学
作者
D. Igra,O. Igra
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:6
标识
DOI:10.1063/5.0153031
摘要

A numerical study investigating the interaction process between a converging shock wave and a gas bubble placed at an offset location is presented. As a first step, for proofing the reliability of the used numerical scheme, a simulation of relevant available experimental findings of Hosseini and Takayama [“Richtmyer–Meshkov instability induced by cylindrical shock wave loading of cylindrical gaseous inhomogeneities,” AIAA Paper No. 2000-2464, 2000] and Hosseini and Takayama [“Study of a converging shock wave interaction with a gaseous interfaces in an eccentric arrangement,” in Japanese Symposium on Shock Waves, 2000] is conducted; the tested gases were helium (He) and sulfur hexafluoride (SF6). The converging shock wave had a Mach number of 1.18 prior to its impact on the 50 mm diameter gas bubble. Achieving good agreement with the experimental findings ensures the reliability of the applied numerical scheme. After the converging shock wave impacted the gas bubble, different shock waves are created. These shock waves propagate differently than those observed in the case of planar shock wave impacting a cylindrical gas bubble or that of a converging shock wave where the gas bubble is located at the center. Furthermore, once the converging shock wave converged, a diverging shock wave expands and again impacts the remaining gas bubble, thus creating more complex shock wave patterns. The gas contained inside the bubble has an effect on the location of the converging shock wave focus point. In the case of the heavy gas SF6, the focus point is near the center of the converging shock wave, but in the case of light gas He, it is offset from the converging shock wave focus point and outside of the initial location of the He bubble. The new results from the current numerical simulation include more detailed results for both bubbles, which were not reported in Hosseini and Takayama [“Richtmyer–Meshkov instability induced by cylindrical shock wave loading of cylindrical gaseous inhomogeneities,” AIAA Paper No. 2000-2464, 2000] and Hosseini and Takayama [“Study of a converging shock wave interaction with a gaseous interfaces in an eccentric arrangement,” in Japanese Symposium on Shock Waves, 2000]. In addition, a shock wave focusing of the transmitted shock wave inside the SF6 bubble is observed. This later creates a secondary diverging shock wave. Higher pressure is achieved in the SF6 case.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
4秒前
5秒前
林奕发布了新的文献求助10
5秒前
juaner发布了新的文献求助10
5秒前
852应助hui采纳,获得10
5秒前
对称破缺完成签到,获得积分10
6秒前
火火完成签到 ,获得积分10
6秒前
菲林发布了新的文献求助10
6秒前
迷人的沛山完成签到 ,获得积分10
6秒前
浮华发布了新的文献求助20
7秒前
纪鹏飞发布了新的文献求助10
11秒前
farr完成签到,获得积分10
11秒前
alexwang发布了新的文献求助30
12秒前
Patience完成签到,获得积分10
12秒前
赘婿应助呃呃呃呃采纳,获得10
15秒前
16秒前
orixero应助行走De太阳花采纳,获得30
18秒前
当代完成签到 ,获得积分10
18秒前
21秒前
纪鹏飞完成签到,获得积分10
21秒前
aa发布了新的文献求助10
22秒前
李健的小迷弟应助hui采纳,获得10
22秒前
林夕完成签到 ,获得积分20
26秒前
26秒前
komorebi发布了新的文献求助10
27秒前
pizwijrit完成签到,获得积分10
27秒前
蜗牛完成签到 ,获得积分10
27秒前
aa完成签到,获得积分10
28秒前
28秒前
jirry完成签到,获得积分10
28秒前
zhw完成签到,获得积分10
29秒前
CipherSage应助甜蜜安筠采纳,获得10
29秒前
FX1688完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
31秒前
一条蛆完成签到 ,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736632
求助须知:如何正确求助?哪些是违规求助? 5367001
关于积分的说明 15333469
捐赠科研通 4880391
什么是DOI,文献DOI怎么找? 2622848
邀请新用户注册赠送积分活动 1571730
关于科研通互助平台的介绍 1528573