亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sparse R-CNN: An End-to-End Framework for Object Detection

目标检测 计算机科学 人工智能 对象(语法) 探测器 模式识别(心理学) 计算机视觉 集合(抽象数据类型) 特征(语言学) 视觉对象识别的认知神经科学 特征提取 趋同(经济学) 图像(数学) 电信 语言学 哲学 经济 程序设计语言 经济增长
作者
Peize Sun,Rufeng Zhang,Yi Jiang,Tao Kong,Chenfeng Xu,Wei Zhan,Masayoshi Tomizuka,Zehuan Yuan,Ping Luo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 15650-15664 被引量:89
标识
DOI:10.1109/tpami.2023.3292030
摘要

Object detection serves as one of most fundamental computer vision tasks. Existing works on object detection heavily rely on dense object candidates, such as k anchor boxes pre-defined on all grids of an image feature map of size H×W. In this paper, we present Sparse R-CNN, a very simple and sparse method for object detection in images. In our method, a fixed sparse set of learned object proposals ( N in total) are provided to the object recognition head to perform classification and localization. By replacing HWk (up to hundreds of thousands) hand-designed object candidates with N (e.g., 100) learnable proposals, Sparse R-CNN makes all efforts related to object candidates design and one-to-many label assignment completely obsolete. More importantly, Sparse R-CNN directly outputs predictions without the non-maximum suppression (NMS) post-processing procedure. Thus, it establishes an end-to-end object detection framework. Sparse R-CNN demonstrates highly competitive accuracy, run-time and training convergence performance with the well-established detector baselines on the challenging COCO dataset and CrowdHuman dataset. We hope that our work can inspire re-thinking the convention of dense prior in object detectors and designing new high-performance detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Ecokarster完成签到,获得积分10
刚刚
酷奔发布了新的文献求助10
5秒前
李爱国应助shiyan_39采纳,获得10
6秒前
马佳音完成签到 ,获得积分10
8秒前
无私雅柏完成签到 ,获得积分10
8秒前
hyyyh发布了新的文献求助10
20秒前
29秒前
糖伯虎完成签到 ,获得积分10
30秒前
33秒前
自然妙竹发布了新的文献求助10
38秒前
ceeray23应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
ceeray23应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
充电宝应助科研通管家采纳,获得10
42秒前
YifanWang应助科研通管家采纳,获得10
42秒前
我是老大应助科研通管家采纳,获得10
42秒前
ceeray23应助科研通管家采纳,获得10
42秒前
1分钟前
楠楠2001完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助小小鹿采纳,获得10
1分钟前
1分钟前
郝誉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小小鹿发布了新的文献求助10
1分钟前
1分钟前
okko完成签到,获得积分10
2分钟前
Hello应助sdndkjfvb采纳,获得10
2分钟前
啦啦啦完成签到,获得积分10
2分钟前
ramsey33完成签到 ,获得积分10
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
2分钟前
Crisp完成签到 ,获得积分10
2分钟前
科研通AI6应助caoju采纳,获得10
2分钟前
2分钟前
阿文完成签到 ,获得积分10
2分钟前
hyyyh完成签到,获得积分10
2分钟前
郝誉发布了新的文献求助10
2分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502807
求助须知:如何正确求助?哪些是违规求助? 4598515
关于积分的说明 14464275
捐赠科研通 4532106
什么是DOI,文献DOI怎么找? 2483837
邀请新用户注册赠送积分活动 1467039
关于科研通互助平台的介绍 1439695