Magnetic Resonance Spectroscopy Spectral Registration Using Deep Learning

体素 计算机科学 卷积神经网络 人工智能 深度学习 磁共振成像 模式识别(心理学) 核磁共振 物理 医学 放射科
作者
Dávid Ma,Yanting Yang,Natalia Harguindeguy,Ye Tian,Scott A. Small,Feng Liu,Douglas L. Rothman,Jia Guo
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 964-975 被引量:4
标识
DOI:10.1002/jmri.28868
摘要

Background Deep learning‐based methods have been successfully applied to MRI image registration. However, there is a lack of deep learning‐based registration methods for magnetic resonance spectroscopy (MRS) spectral registration (SR). Purpose To investigate a convolutional neural network‐based SR (CNN‐SR) approach for simultaneous frequency‐and‐phase correction (FPC) of single‐voxel Meshcher–Garwood point‐resolved spectroscopy (MEGA‐PRESS) MRS data. Study Type Retrospective. Subjects Forty thousand simulated MEGA‐PRESS datasets generated from FID Appliance (FID‐A) were used and split into the following: 32,000/4000/4000 for training/validation/testing. A 101 MEGA‐PRESS medial parietal lobe data retrieved from the Big GABA were used as the in vivo datasets. Field Strength/Sequence 3T, MEGA‐PRESS. Assessment Evaluation of frequency and phase offsets mean absolute errors were performed for the simulation dataset. Evaluation of the choline interval variance was performed for the in vivo dataset. The magnitudes of the offsets introduced were −20 to 20 Hz and −90° to 90° and were uniformly distributed for the simulation dataset at different signal‐to‐noise ratio (SNR) levels. For the in vivo dataset, different additional magnitudes of offsets were introduced: small offsets (0–5 Hz; 0–20°), medium offsets (5–10 Hz; 20–45°), and large offsets (10–20 Hz; 45–90°). Statistical Tests Two‐tailed paired t ‐tests for model performances in the simulation and in vivo datasets were used and a P ‐value <0.05 was considered statistically significant. Results CNN‐SR model was capable of correcting frequency offsets (0.014 ± 0.010 Hz at SNR 20 and 0.058 ± 0.050 Hz at SNR 2.5 with line broadening) and phase offsets (0.104 ± 0.076° at SNR 20 and 0.416 ± 0.317° at SNR 2.5 with line broadening). Using in vivo datasets, CNN‐SR achieved the best performance without (0.000055 ± 0.000054) and with different magnitudes of additional frequency and phase offsets (i.e., 0.000062 ± 0.000068 at small, −0.000033 ± 0.000023 at medium, 0.000067 ± 0.000102 at large) applied. Data Conclusion The proposed CNN‐SR method is an efficient and accurate approach for simultaneous FPC of single‐voxel MEGA‐PRESS MRS data. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助开心采白采纳,获得10
刚刚
木子完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
迷路的心锁完成签到 ,获得积分10
4秒前
哈哈哈哈完成签到,获得积分10
5秒前
黯然完成签到 ,获得积分10
5秒前
5秒前
小可爱发布了新的文献求助10
6秒前
7秒前
7秒前
SciGPT应助一一采纳,获得10
7秒前
8秒前
小孟发布了新的文献求助10
9秒前
9秒前
junxi完成签到,获得积分10
9秒前
甜茶完成签到,获得积分10
10秒前
cuckoo发布了新的文献求助20
10秒前
10秒前
科研通AI6应助hongcha采纳,获得30
10秒前
Wo了喝发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
smile发布了新的文献求助10
13秒前
CXR完成签到 ,获得积分10
14秒前
李爱国应助流光之城采纳,获得10
14秒前
cxinnn完成签到,获得积分10
15秒前
15秒前
wxy发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
宋凤娇发布了新的文献求助10
17秒前
念安完成签到,获得积分10
18秒前
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
Dean应助科研通管家采纳,获得50
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134611
求助须知:如何正确求助?哪些是违规求助? 4335333
关于积分的说明 13506379
捐赠科研通 4172796
什么是DOI,文献DOI怎么找? 2287898
邀请新用户注册赠送积分活动 1288830
关于科研通互助平台的介绍 1229749