Magnetic Resonance Spectroscopy Spectral Registration Using Deep Learning

体素 计算机科学 卷积神经网络 人工智能 深度学习 磁共振成像 模式识别(心理学) 核磁共振 物理 医学 放射科
作者
Dávid Ma,Yanting Yang,Natalia Harguindeguy,Ye Tian,Scott A. Small,Feng Liu,Douglas L. Rothman,Jia Guo
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 964-975 被引量:4
标识
DOI:10.1002/jmri.28868
摘要

Background Deep learning‐based methods have been successfully applied to MRI image registration. However, there is a lack of deep learning‐based registration methods for magnetic resonance spectroscopy (MRS) spectral registration (SR). Purpose To investigate a convolutional neural network‐based SR (CNN‐SR) approach for simultaneous frequency‐and‐phase correction (FPC) of single‐voxel Meshcher–Garwood point‐resolved spectroscopy (MEGA‐PRESS) MRS data. Study Type Retrospective. Subjects Forty thousand simulated MEGA‐PRESS datasets generated from FID Appliance (FID‐A) were used and split into the following: 32,000/4000/4000 for training/validation/testing. A 101 MEGA‐PRESS medial parietal lobe data retrieved from the Big GABA were used as the in vivo datasets. Field Strength/Sequence 3T, MEGA‐PRESS. Assessment Evaluation of frequency and phase offsets mean absolute errors were performed for the simulation dataset. Evaluation of the choline interval variance was performed for the in vivo dataset. The magnitudes of the offsets introduced were −20 to 20 Hz and −90° to 90° and were uniformly distributed for the simulation dataset at different signal‐to‐noise ratio (SNR) levels. For the in vivo dataset, different additional magnitudes of offsets were introduced: small offsets (0–5 Hz; 0–20°), medium offsets (5–10 Hz; 20–45°), and large offsets (10–20 Hz; 45–90°). Statistical Tests Two‐tailed paired t ‐tests for model performances in the simulation and in vivo datasets were used and a P ‐value <0.05 was considered statistically significant. Results CNN‐SR model was capable of correcting frequency offsets (0.014 ± 0.010 Hz at SNR 20 and 0.058 ± 0.050 Hz at SNR 2.5 with line broadening) and phase offsets (0.104 ± 0.076° at SNR 20 and 0.416 ± 0.317° at SNR 2.5 with line broadening). Using in vivo datasets, CNN‐SR achieved the best performance without (0.000055 ± 0.000054) and with different magnitudes of additional frequency and phase offsets (i.e., 0.000062 ± 0.000068 at small, −0.000033 ± 0.000023 at medium, 0.000067 ± 0.000102 at large) applied. Data Conclusion The proposed CNN‐SR method is an efficient and accurate approach for simultaneous FPC of single‐voxel MEGA‐PRESS MRS data. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助我爱乒乓球采纳,获得10
刚刚
1秒前
dingdingding发布了新的文献求助10
2秒前
77发布了新的文献求助10
2秒前
3秒前
害羞雨南完成签到,获得积分10
3秒前
huangxq完成签到,获得积分10
3秒前
3秒前
Akim应助淡然篮球采纳,获得10
3秒前
所所应助缥缈的青旋采纳,获得10
3秒前
科研通AI6应助徐zhipei采纳,获得30
3秒前
替罗非班发布了新的文献求助10
3秒前
myp完成签到,获得积分10
3秒前
lzx666发布了新的文献求助10
4秒前
4秒前
昱旻完成签到 ,获得积分10
4秒前
Akim应助香蕉静芙采纳,获得10
4秒前
5秒前
5秒前
昵称发布了新的文献求助10
5秒前
研友_VZG7GZ应助JI采纳,获得20
6秒前
Dean应助yydsyyd采纳,获得50
6秒前
追寻的访烟完成签到,获得积分10
6秒前
李哈哈发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
Persist完成签到,获得积分10
8秒前
在水一方应助紫罗兰花海采纳,获得10
8秒前
8秒前
9秒前
yhao发布了新的文献求助10
9秒前
9秒前
科目三应助King16采纳,获得10
9秒前
summer发布了新的文献求助10
9秒前
9秒前
9秒前
桐桐应助兰彻采纳,获得10
9秒前
小马甲应助haha采纳,获得10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437