Magnetic Resonance Spectroscopy Spectral Registration Using Deep Learning

体素 计算机科学 卷积神经网络 人工智能 深度学习 磁共振成像 模式识别(心理学) 核磁共振 物理 医学 放射科
作者
Dávid Ma,Yanting Yang,Natalia Harguindeguy,Ye Tian,Scott A. Small,Feng Liu,Douglas L. Rothman,Jia Guo
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 964-975 被引量:4
标识
DOI:10.1002/jmri.28868
摘要

Background Deep learning‐based methods have been successfully applied to MRI image registration. However, there is a lack of deep learning‐based registration methods for magnetic resonance spectroscopy (MRS) spectral registration (SR). Purpose To investigate a convolutional neural network‐based SR (CNN‐SR) approach for simultaneous frequency‐and‐phase correction (FPC) of single‐voxel Meshcher–Garwood point‐resolved spectroscopy (MEGA‐PRESS) MRS data. Study Type Retrospective. Subjects Forty thousand simulated MEGA‐PRESS datasets generated from FID Appliance (FID‐A) were used and split into the following: 32,000/4000/4000 for training/validation/testing. A 101 MEGA‐PRESS medial parietal lobe data retrieved from the Big GABA were used as the in vivo datasets. Field Strength/Sequence 3T, MEGA‐PRESS. Assessment Evaluation of frequency and phase offsets mean absolute errors were performed for the simulation dataset. Evaluation of the choline interval variance was performed for the in vivo dataset. The magnitudes of the offsets introduced were −20 to 20 Hz and −90° to 90° and were uniformly distributed for the simulation dataset at different signal‐to‐noise ratio (SNR) levels. For the in vivo dataset, different additional magnitudes of offsets were introduced: small offsets (0–5 Hz; 0–20°), medium offsets (5–10 Hz; 20–45°), and large offsets (10–20 Hz; 45–90°). Statistical Tests Two‐tailed paired t ‐tests for model performances in the simulation and in vivo datasets were used and a P ‐value <0.05 was considered statistically significant. Results CNN‐SR model was capable of correcting frequency offsets (0.014 ± 0.010 Hz at SNR 20 and 0.058 ± 0.050 Hz at SNR 2.5 with line broadening) and phase offsets (0.104 ± 0.076° at SNR 20 and 0.416 ± 0.317° at SNR 2.5 with line broadening). Using in vivo datasets, CNN‐SR achieved the best performance without (0.000055 ± 0.000054) and with different magnitudes of additional frequency and phase offsets (i.e., 0.000062 ± 0.000068 at small, −0.000033 ± 0.000023 at medium, 0.000067 ± 0.000102 at large) applied. Data Conclusion The proposed CNN‐SR method is an efficient and accurate approach for simultaneous FPC of single‐voxel MEGA‐PRESS MRS data. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尤里有气发布了新的文献求助10
1秒前
郝56发布了新的文献求助10
1秒前
白切鸡大人完成签到,获得积分10
2秒前
dai完成签到,获得积分10
2秒前
一叶扁舟发布了新的文献求助10
3秒前
3秒前
konosuba完成签到,获得积分10
3秒前
3秒前
冰冰发布了新的文献求助20
4秒前
colddie完成签到,获得积分10
5秒前
Yifan2024应助单纯采纳,获得30
5秒前
米六完成签到 ,获得积分10
5秒前
Yifan2024应助酷炫小笼包采纳,获得80
6秒前
尤里有气完成签到,获得积分10
6秒前
科研通AI2S应助光亮念文采纳,获得10
7秒前
司空威发布了新的文献求助10
7秒前
8秒前
9秒前
热忱发布了新的文献求助10
10秒前
斯文败类应助在林耳采纳,获得10
11秒前
Fluency完成签到,获得积分10
12秒前
眼睛大白梦完成签到,获得积分10
12秒前
打打应助兴奋的怀曼采纳,获得10
12秒前
可爱无招完成签到,获得积分10
14秒前
米六发布了新的文献求助10
14秒前
14秒前
机灵的大地完成签到,获得积分10
16秒前
Yifan2024应助孤独碧空采纳,获得10
16秒前
无花果应助酷炫萃采纳,获得10
17秒前
热忱完成签到,获得积分10
18秒前
20秒前
可爱无招发布了新的文献求助10
21秒前
阔达代云发布了新的文献求助20
21秒前
22秒前
23秒前
搜集达人应助呆萌沛蓝采纳,获得30
23秒前
雪白的夜阑完成签到 ,获得积分10
23秒前
光亮念文完成签到,获得积分10
23秒前
斯文败类应助xiaolu采纳,获得200
24秒前
大模型应助stubborn采纳,获得10
24秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396049
求助须知:如何正确求助?哪些是违规求助? 3006035
关于积分的说明 8818966
捐赠科研通 2693026
什么是DOI,文献DOI怎么找? 1475062
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675495