Magnetic Resonance Spectroscopy Spectral Registration Using Deep Learning

体素 计算机科学 卷积神经网络 人工智能 深度学习 磁共振成像 模式识别(心理学) 核磁共振 物理 医学 放射科
作者
Dávid Ma,Yanting Yang,Natalia Harguindeguy,Ye Tian,Scott A. Small,Feng Liu,Douglas L. Rothman,Jia Guo
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 964-975 被引量:4
标识
DOI:10.1002/jmri.28868
摘要

Background Deep learning‐based methods have been successfully applied to MRI image registration. However, there is a lack of deep learning‐based registration methods for magnetic resonance spectroscopy (MRS) spectral registration (SR). Purpose To investigate a convolutional neural network‐based SR (CNN‐SR) approach for simultaneous frequency‐and‐phase correction (FPC) of single‐voxel Meshcher–Garwood point‐resolved spectroscopy (MEGA‐PRESS) MRS data. Study Type Retrospective. Subjects Forty thousand simulated MEGA‐PRESS datasets generated from FID Appliance (FID‐A) were used and split into the following: 32,000/4000/4000 for training/validation/testing. A 101 MEGA‐PRESS medial parietal lobe data retrieved from the Big GABA were used as the in vivo datasets. Field Strength/Sequence 3T, MEGA‐PRESS. Assessment Evaluation of frequency and phase offsets mean absolute errors were performed for the simulation dataset. Evaluation of the choline interval variance was performed for the in vivo dataset. The magnitudes of the offsets introduced were −20 to 20 Hz and −90° to 90° and were uniformly distributed for the simulation dataset at different signal‐to‐noise ratio (SNR) levels. For the in vivo dataset, different additional magnitudes of offsets were introduced: small offsets (0–5 Hz; 0–20°), medium offsets (5–10 Hz; 20–45°), and large offsets (10–20 Hz; 45–90°). Statistical Tests Two‐tailed paired t ‐tests for model performances in the simulation and in vivo datasets were used and a P ‐value <0.05 was considered statistically significant. Results CNN‐SR model was capable of correcting frequency offsets (0.014 ± 0.010 Hz at SNR 20 and 0.058 ± 0.050 Hz at SNR 2.5 with line broadening) and phase offsets (0.104 ± 0.076° at SNR 20 and 0.416 ± 0.317° at SNR 2.5 with line broadening). Using in vivo datasets, CNN‐SR achieved the best performance without (0.000055 ± 0.000054) and with different magnitudes of additional frequency and phase offsets (i.e., 0.000062 ± 0.000068 at small, −0.000033 ± 0.000023 at medium, 0.000067 ± 0.000102 at large) applied. Data Conclusion The proposed CNN‐SR method is an efficient and accurate approach for simultaneous FPC of single‐voxel MEGA‐PRESS MRS data. Evidence Level 4 Technical Efficacy Stage 2

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Zoe完成签到,获得积分10
3秒前
DearWhite完成签到,获得积分10
3秒前
5秒前
囧囧应助初夏的百褶裙采纳,获得50
6秒前
7秒前
香蕉诗蕊应助大白包子李采纳,获得10
7秒前
香蕉诗蕊应助大白包子李采纳,获得10
7秒前
7秒前
香蕉诗蕊应助大白包子李采纳,获得10
7秒前
香蕉诗蕊应助大白包子李采纳,获得10
7秒前
wj发布了新的文献求助10
8秒前
9秒前
寒天抒发布了新的文献求助10
9秒前
Ryan完成签到 ,获得积分10
10秒前
10秒前
嘿嘿发布了新的文献求助10
13秒前
13秒前
13秒前
爆米花应助无事一身轻采纳,获得10
14秒前
棒棒的红红完成签到,获得积分10
15秒前
xiaojiezhang发布了新的文献求助10
15秒前
囧囧应助初夏的百褶裙采纳,获得50
15秒前
香蕉诗蕊应助大白包子李采纳,获得10
15秒前
香蕉诗蕊应助大白包子李采纳,获得10
15秒前
香蕉诗蕊应助大白包子李采纳,获得10
15秒前
香蕉诗蕊应助大白包子李采纳,获得10
15秒前
香蕉诗蕊应助大白包子李采纳,获得10
16秒前
香蕉诗蕊应助大白包子李采纳,获得10
16秒前
香蕉诗蕊应助大白包子李采纳,获得10
16秒前
香蕉诗蕊应助大白包子李采纳,获得10
16秒前
16秒前
香蕉诗蕊应助大白包子李采纳,获得10
16秒前
csx应助大白包子李采纳,获得10
16秒前
16秒前
英吉利25发布了新的文献求助20
19秒前
海孩子发布了新的文献求助30
20秒前
Hd完成签到 ,获得积分10
21秒前
852应助等乙天采纳,获得10
22秒前
Yyyyuy发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563093
求助须知:如何正确求助?哪些是违规求助? 4647860
关于积分的说明 14683144
捐赠科研通 4590036
什么是DOI,文献DOI怎么找? 2518252
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462318