Magnetic Resonance Spectroscopy Spectral Registration Using Deep Learning

体素 计算机科学 卷积神经网络 人工智能 深度学习 磁共振成像 模式识别(心理学) 核磁共振 物理 医学 放射科
作者
Dávid Ma,Yanting Yang,Natalia Harguindeguy,Ye Tian,Scott A. Small,Feng Liu,Douglas L. Rothman,Jia Guo
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 964-975 被引量:4
标识
DOI:10.1002/jmri.28868
摘要

Background Deep learning‐based methods have been successfully applied to MRI image registration. However, there is a lack of deep learning‐based registration methods for magnetic resonance spectroscopy (MRS) spectral registration (SR). Purpose To investigate a convolutional neural network‐based SR (CNN‐SR) approach for simultaneous frequency‐and‐phase correction (FPC) of single‐voxel Meshcher–Garwood point‐resolved spectroscopy (MEGA‐PRESS) MRS data. Study Type Retrospective. Subjects Forty thousand simulated MEGA‐PRESS datasets generated from FID Appliance (FID‐A) were used and split into the following: 32,000/4000/4000 for training/validation/testing. A 101 MEGA‐PRESS medial parietal lobe data retrieved from the Big GABA were used as the in vivo datasets. Field Strength/Sequence 3T, MEGA‐PRESS. Assessment Evaluation of frequency and phase offsets mean absolute errors were performed for the simulation dataset. Evaluation of the choline interval variance was performed for the in vivo dataset. The magnitudes of the offsets introduced were −20 to 20 Hz and −90° to 90° and were uniformly distributed for the simulation dataset at different signal‐to‐noise ratio (SNR) levels. For the in vivo dataset, different additional magnitudes of offsets were introduced: small offsets (0–5 Hz; 0–20°), medium offsets (5–10 Hz; 20–45°), and large offsets (10–20 Hz; 45–90°). Statistical Tests Two‐tailed paired t ‐tests for model performances in the simulation and in vivo datasets were used and a P ‐value <0.05 was considered statistically significant. Results CNN‐SR model was capable of correcting frequency offsets (0.014 ± 0.010 Hz at SNR 20 and 0.058 ± 0.050 Hz at SNR 2.5 with line broadening) and phase offsets (0.104 ± 0.076° at SNR 20 and 0.416 ± 0.317° at SNR 2.5 with line broadening). Using in vivo datasets, CNN‐SR achieved the best performance without (0.000055 ± 0.000054) and with different magnitudes of additional frequency and phase offsets (i.e., 0.000062 ± 0.000068 at small, −0.000033 ± 0.000023 at medium, 0.000067 ± 0.000102 at large) applied. Data Conclusion The proposed CNN‐SR method is an efficient and accurate approach for simultaneous FPC of single‐voxel MEGA‐PRESS MRS data. Evidence Level 4 Technical Efficacy Stage 2

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YCJ发布了新的文献求助10
1秒前
小马甲应助江伊采纳,获得10
1秒前
渺渺完成签到 ,获得积分10
1秒前
锅嘚硬完成签到,获得积分10
1秒前
青云天发布了新的文献求助10
1秒前
SAINT发布了新的文献求助10
1秒前
1秒前
佳佳528发布了新的文献求助10
1秒前
传奇3应助汝桢采纳,获得10
2秒前
2秒前
2秒前
蔡蔡蔡发布了新的文献求助10
2秒前
约定完成签到,获得积分10
3秒前
3秒前
兜兜完成签到,获得积分10
3秒前
白白SAMA123发布了新的文献求助10
3秒前
东方元语应助无极微光采纳,获得20
4秒前
suusu发布了新的文献求助10
4秒前
风中冰香应助cc66采纳,获得10
4秒前
4秒前
深情安青应助Disguise采纳,获得30
4秒前
酷波er应助山复尔尔采纳,获得10
4秒前
5秒前
zhangxh完成签到,获得积分10
5秒前
搜集达人应助zy990125采纳,获得30
5秒前
5秒前
科研通AI2S应助MiaofangZhou采纳,获得10
6秒前
6秒前
善学以致用应助荷珠采纳,获得200
6秒前
科研通AI2S应助灵泽采纳,获得10
6秒前
AlinaLee发布了新的文献求助15
6秒前
如风过境发布了新的文献求助10
7秒前
weirdo发布了新的文献求助10
7秒前
爱瞳之翼发布了新的文献求助10
8秒前
Jasper应助安详的惜梦采纳,获得10
9秒前
爆米花应助柠檬泡芙采纳,获得10
9秒前
可爱的函函应助user_huang采纳,获得10
9秒前
山复尔尔完成签到,获得积分10
9秒前
9秒前
YiTao完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512626
求助须知:如何正确求助?哪些是违规求助? 4607098
关于积分的说明 14503038
捐赠科研通 4542487
什么是DOI,文献DOI怎么找? 2489056
邀请新用户注册赠送积分活动 1471133
关于科研通互助平台的介绍 1443219