Magnetic Resonance Spectroscopy Spectral Registration Using Deep Learning

体素 计算机科学 卷积神经网络 人工智能 深度学习 磁共振成像 模式识别(心理学) 核磁共振 物理 医学 放射科
作者
Dávid Ma,Yanting Yang,Natalia Harguindeguy,Ye Tian,Scott A. Small,Feng Liu,Douglas L. Rothman,Jia Guo
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 964-975 被引量:4
标识
DOI:10.1002/jmri.28868
摘要

Background Deep learning‐based methods have been successfully applied to MRI image registration. However, there is a lack of deep learning‐based registration methods for magnetic resonance spectroscopy (MRS) spectral registration (SR). Purpose To investigate a convolutional neural network‐based SR (CNN‐SR) approach for simultaneous frequency‐and‐phase correction (FPC) of single‐voxel Meshcher–Garwood point‐resolved spectroscopy (MEGA‐PRESS) MRS data. Study Type Retrospective. Subjects Forty thousand simulated MEGA‐PRESS datasets generated from FID Appliance (FID‐A) were used and split into the following: 32,000/4000/4000 for training/validation/testing. A 101 MEGA‐PRESS medial parietal lobe data retrieved from the Big GABA were used as the in vivo datasets. Field Strength/Sequence 3T, MEGA‐PRESS. Assessment Evaluation of frequency and phase offsets mean absolute errors were performed for the simulation dataset. Evaluation of the choline interval variance was performed for the in vivo dataset. The magnitudes of the offsets introduced were −20 to 20 Hz and −90° to 90° and were uniformly distributed for the simulation dataset at different signal‐to‐noise ratio (SNR) levels. For the in vivo dataset, different additional magnitudes of offsets were introduced: small offsets (0–5 Hz; 0–20°), medium offsets (5–10 Hz; 20–45°), and large offsets (10–20 Hz; 45–90°). Statistical Tests Two‐tailed paired t ‐tests for model performances in the simulation and in vivo datasets were used and a P ‐value <0.05 was considered statistically significant. Results CNN‐SR model was capable of correcting frequency offsets (0.014 ± 0.010 Hz at SNR 20 and 0.058 ± 0.050 Hz at SNR 2.5 with line broadening) and phase offsets (0.104 ± 0.076° at SNR 20 and 0.416 ± 0.317° at SNR 2.5 with line broadening). Using in vivo datasets, CNN‐SR achieved the best performance without (0.000055 ± 0.000054) and with different magnitudes of additional frequency and phase offsets (i.e., 0.000062 ± 0.000068 at small, −0.000033 ± 0.000023 at medium, 0.000067 ± 0.000102 at large) applied. Data Conclusion The proposed CNN‐SR method is an efficient and accurate approach for simultaneous FPC of single‐voxel MEGA‐PRESS MRS data. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静如松完成签到 ,获得积分10
3秒前
Gavin完成签到,获得积分10
3秒前
一切都会好起来的完成签到,获得积分10
4秒前
科研通AI2S应助Lorain采纳,获得10
8秒前
whitepiece完成签到,获得积分10
10秒前
小绵羊发布了新的文献求助10
16秒前
23秒前
领导范儿应助卉不卉采纳,获得10
24秒前
务实觅松完成签到 ,获得积分10
28秒前
包容的映天完成签到 ,获得积分10
29秒前
小绵羊发布了新的文献求助10
29秒前
Lazyazy_完成签到 ,获得积分10
30秒前
大气夜山完成签到 ,获得积分10
34秒前
Swann应助小绵羊采纳,获得10
36秒前
leibaozun完成签到 ,获得积分10
39秒前
求助完成签到,获得积分10
43秒前
糟糕的翅膀完成签到,获得积分10
44秒前
Much完成签到 ,获得积分10
45秒前
la完成签到 ,获得积分10
48秒前
包容的忆灵完成签到 ,获得积分10
52秒前
laber应助科研通管家采纳,获得30
52秒前
在水一方应助科研通管家采纳,获得10
52秒前
ab完成签到,获得积分10
59秒前
Fiona完成签到 ,获得积分10
1分钟前
小熊完成签到 ,获得积分10
1分钟前
1分钟前
小墨墨完成签到 ,获得积分10
1分钟前
1分钟前
忧伤的二锅头完成签到 ,获得积分10
1分钟前
从容映易完成签到,获得积分10
1分钟前
无限的含羞草完成签到,获得积分10
1分钟前
leo完成签到 ,获得积分10
1分钟前
1分钟前
小蘑菇应助不安的鸡翅采纳,获得10
1分钟前
卉不卉完成签到,获得积分10
1分钟前
1分钟前
WQ发布了新的文献求助10
1分钟前
卉不卉发布了新的文献求助10
1分钟前
jkaaa完成签到,获得积分10
1分钟前
jenningseastera应助WQ采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965769
求助须知:如何正确求助?哪些是违规求助? 3510991
关于积分的说明 11155985
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874215
科研通“疑难数据库(出版商)”最低求助积分说明 804255