化学
乙烯
甲烷氧化偶联
沸石
光化学
脱氢
甲烷
催化作用
无机化学
艾伦
反应中间体
有机化学
作者
Hao Zhang,Aleksei Bolshakov,Raghavendra Meena,Gustavo A. García,A. Iulian Dugulan,Alexander Parastaev,Guanna Li,Emiel J. M. Hensen,Nikolay Kosinov
标识
DOI:10.1002/anie.202306196
摘要
Non-oxidative coupling of methane is a promising route to obtain ethylene directly from natural gas. We synthesized siliceous [Fe]zeolites with MFI and CHA topologies and found that they display high selectivity (>90 % for MFI and >99 % for CHA) to ethylene and ethane among gas-phase products. Deactivated [Fe]zeolites can be regenerated by burning coke in air. In situ X-ray absorption spectroscopy demonstrates that the isolated Fe3+ centers in zeolite framework of fresh catalysts are reduced during the reaction to the active sites, including Fe2+ species and Fe (oxy)carbides dispersed in zeolite pores. Photoelectron photoion coincidence spectroscopy results show that methyl radicals are the reaction intermediates formed upon methane activation. Ethane is formed by methyl radical coupling, followed by its dehydrogenation to ethylene. Based on the observation of intermediates including allene, vinylacetylene, 1,3-butadiene, 2-butyne, and cyclopentadiene over [Fe]MFI, a reaction network is proposed leading to polyaromatic species. Such reaction intermediates are not observed over the small-pore [Fe]CHA, where ethylene and ethane are the only gas-phase products.
科研通智能强力驱动
Strongly Powered by AbleSci AI