姜黄素
肿胀 的
壳聚糖
化学
药物输送
生物利用度
自愈水凝胶
淀粉
控制释放
化学工程
胃液
吸附
多孔性
核化学
色谱法
材料科学
高分子化学
纳米技术
有机化学
药理学
生物化学
医学
工程类
作者
Ying Li,Xiu-Er Luo,Ming-Jun Tan,Fu-Hao Yue,Run-Yu Yao,Xin‐An Zeng,Meng Wai Woo,Qing‐Hui Wen,Zhong Han
标识
DOI:10.1016/j.ijbiomac.2023.125716
摘要
In this study, a novel carboxymethylcellulose / ZnO / chitosan (CMC / ZnO / Cs) hydrogel microbeads loaded with crosslinked porous starch / curcumin (CPS / Cur) were designed and prepared to improve the encapsulation efficiency of curcumin for drug delivery to specific sites. It was found that the total pore volume of crosslinked porous starch (CPS) was increased by 1150 % when compared to the native starch (NS), and the adsorption ratio of curcumin by CPS was enhanced by 27 % when compared to NS. Secondly, the swelling ratio of composite hydrogel microbeads was within 25 % in an acidic environment at pH 1.2, and the swelling ratio of hydrogel microbeads sharply increased to 320 % ~ 370 % at pH 6.8 and 7.4. In addition, the results of in vitro simulated release experiments showed that the released amount of hydrogel microbeads loaded with NS/Cur and CPS/Cur in SGF were within 7 % in simulated gastric fluid (SGF). The highest released amount of curcumin was 65.26 % for hydrogel beads loaded with CPS/Cur, which was 26 % lower than that of hydrogel microbeads loaded with Cur in simulated intestinal fluid (SIF). In simulated colonic fluid (SCF), the released amount of hydrogel microbeads loaded with CPS/Cur and Cur were 73.96 % and 91.69 %, respectively. In conclusion, pH-sensitive drug delivery system with good drug stability and bioavailability were successfully prepared with carboxymethylcellulose / ZnO / chitosan bead, suitable targeting drug delivery to the small intestine.
科研通智能强力驱动
Strongly Powered by AbleSci AI