Transformer-Based Approach Via Contrastive Learning for Zero-Shot Detection

计算机科学 人工智能 变压器 模式识别(心理学) 零(语言学) 工程类 电气工程 语言学 哲学 电压
作者
Wei Liu,Hui Chen,Yongqiang Ma,Jianji Wang,Nanning Zheng
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (07) 被引量:5
标识
DOI:10.1142/s0129065723500351
摘要

Zero-shot detection (ZSD) aims to locate and classify unseen objects in pictures or videos by semantic auxiliary information without additional training examples. Most of the existing ZSD methods are based on two-stage models, which achieve the detection of unseen classes by aligning object region proposals with semantic embeddings. However, these methods have several limitations, including poor region proposals for unseen classes, lack of consideration of semantic representations of unseen classes or their inter-class correlations, and domain bias towards seen classes, which can degrade overall performance. To address these issues, the Trans-ZSD framework is proposed, which is a transformer-based multi-scale contextual detection framework that explicitly exploits inter-class correlations between seen and unseen classes and optimizes feature distribution to learn discriminative features. Trans-ZSD is a single-stage approach that skips proposal generation and performs detection directly, allowing the encoding of long-term dependencies at multiple scales to learn contextual features while requiring fewer inductive biases. Trans-ZSD also introduces a foreground-background separation branch to alleviate the confusion of unseen classes and backgrounds, contrastive learning to learn inter-class uniqueness and reduce misclassification between similar classes, and explicit inter-class commonality learning to facilitate generalization between related classes. Trans-ZSD addresses the domain bias problem in end-to-end generalized zero-shot detection (GZSD) models by using balance loss to maximize response consistency between seen and unseen predictions, ensuring that the model does not bias towards seen classes. The Trans-ZSD framework is evaluated on the PASCAL VOC and MS COCO datasets, demonstrating significant improvements over existing ZSD models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
呆萌如容完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
冷艳招牌应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得80
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
lily336699发布了新的文献求助30
6秒前
hute完成签到 ,获得积分10
6秒前
6秒前
稳重一寡发布了新的文献求助10
6秒前
Scrow完成签到 ,获得积分10
7秒前
7秒前
帅气鹭洋发布了新的文献求助10
8秒前
9秒前
汉堡包应助john163采纳,获得10
9秒前
ww发布了新的文献求助10
10秒前
10秒前
11秒前
傲娇的觅翠完成签到,获得积分10
12秒前
赵赵a完成签到,获得积分10
13秒前
彭于晏应助稳重一寡采纳,获得20
13秒前
幸福大白发布了新的文献求助10
15秒前
ww完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883732
求助须知:如何正确求助?哪些是违规求助? 4169161
关于积分的说明 12936110
捐赠科研通 3929503
什么是DOI,文献DOI怎么找? 2156155
邀请新用户注册赠送积分活动 1174556
关于科研通互助平台的介绍 1079303