Transformer-Based Approach Via Contrastive Learning for Zero-Shot Detection

计算机科学 人工智能 变压器 模式识别(心理学) 零(语言学) 工程类 电气工程 哲学 语言学 电压
作者
Wei Liu,Hui Chen,Yongqiang Ma,Jianji Wang,Nanning Zheng
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (07) 被引量:5
标识
DOI:10.1142/s0129065723500351
摘要

Zero-shot detection (ZSD) aims to locate and classify unseen objects in pictures or videos by semantic auxiliary information without additional training examples. Most of the existing ZSD methods are based on two-stage models, which achieve the detection of unseen classes by aligning object region proposals with semantic embeddings. However, these methods have several limitations, including poor region proposals for unseen classes, lack of consideration of semantic representations of unseen classes or their inter-class correlations, and domain bias towards seen classes, which can degrade overall performance. To address these issues, the Trans-ZSD framework is proposed, which is a transformer-based multi-scale contextual detection framework that explicitly exploits inter-class correlations between seen and unseen classes and optimizes feature distribution to learn discriminative features. Trans-ZSD is a single-stage approach that skips proposal generation and performs detection directly, allowing the encoding of long-term dependencies at multiple scales to learn contextual features while requiring fewer inductive biases. Trans-ZSD also introduces a foreground-background separation branch to alleviate the confusion of unseen classes and backgrounds, contrastive learning to learn inter-class uniqueness and reduce misclassification between similar classes, and explicit inter-class commonality learning to facilitate generalization between related classes. Trans-ZSD addresses the domain bias problem in end-to-end generalized zero-shot detection (GZSD) models by using balance loss to maximize response consistency between seen and unseen predictions, ensuring that the model does not bias towards seen classes. The Trans-ZSD framework is evaluated on the PASCAL VOC and MS COCO datasets, demonstrating significant improvements over existing ZSD models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿应助小高采纳,获得10
1秒前
cc完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
Zoe完成签到,获得积分10
4秒前
舒苏应助ABCDE采纳,获得30
6秒前
7秒前
慧子完成签到,获得积分10
7秒前
小二郎应助家夜雪采纳,获得10
7秒前
shiiiny发布了新的文献求助10
7秒前
合适白猫完成签到,获得积分10
8秒前
BowieHuang应助元谷雪采纳,获得10
8秒前
薄荷完成签到,获得积分10
8秒前
9秒前
害怕的帽子完成签到 ,获得积分10
9秒前
10秒前
11秒前
寇博翔发布了新的文献求助10
12秒前
烂漫的飞松完成签到,获得积分10
12秒前
苹果冬莲完成签到,获得积分10
12秒前
去心邻域完成签到,获得积分10
13秒前
天地一体完成签到,获得积分10
16秒前
18秒前
梦玲完成签到 ,获得积分10
18秒前
小二郎应助可可奇采纳,获得10
21秒前
22秒前
慕青应助tguczf采纳,获得10
22秒前
23秒前
23秒前
NexusExplorer应助小高采纳,获得10
23秒前
张贵虎完成签到 ,获得积分10
24秒前
李兴完成签到 ,获得积分10
24秒前
25秒前
华仔应助11采纳,获得10
25秒前
研友_VZG7GZ应助竹寺采纳,获得10
25秒前
脑洞疼应助jetwang采纳,获得200
26秒前
27秒前
28秒前
28秒前
清脆的台灯完成签到,获得积分10
28秒前
挽风发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867