材料科学
纳米棒
兴奋剂
反射损耗
纳米纤维
纳米技术
光电子学
纳米线
复合材料
复合数
作者
Xinxin Wang,Feifei You,Qibin Yao,Kairui Wang,You Liao,Guoxiu Tong,Xiaojuan Wang,Tong Wu,Wenhua Wu
出处
期刊:Materials horizons
[The Royal Society of Chemistry]
日期:2023-01-01
卷期号:10 (7): 2677-2690
被引量:33
摘要
To address the electromagnetic interference (EMI) and heat dissipation issues in electronics, we pioneered the synthesis of Fe-doped CeO2/Ce(OH)3 core-shell nanorods/nanofibers (CSNRs/NFs) through a simple one-pot hydrothermal reaction. The growth of core-shell nanofibers was driven by the minimal surface free energy and vacancy formation energy. By controlling the amount of Fe-doping, not simply Fe0 content, crystallite size, defects, impurities, and length/diameter ratios could be modulated, but the electric, magnetic, thermal, and microwave absorption performance. The efficient 3D network constructed by 1D nanofibers in a silicone matrix offered a continuous pathway for electrons/phonon relay transmission, endowing the composites with exceptional heating conductance (3.442 W m-1 K-1) at 20%Fe-doping. An ultrawide absorption band (9.26 GHz) with intense absorption (-42.33 dB) and small thickness (1.7 mm) was achieved at 10%Fe-doping due to excellent matching performance, strong attenuation ability, and large EM parameters. Overall, Fe-doped CeO2/Ce(OH)3 CSNFs are a promising material for next-generation electronics with effective heat dissipation and EM wave absorption due to their straightforward process, mass production, and outstanding comprehensive performance. Beyond providing a deeper insight into the accurate defect modulation in magnetic-dielectric-double-loss absorbents by doping, this paper proposes an electron/phonon relay transmission strategy to improve heat conductance.
科研通智能强力驱动
Strongly Powered by AbleSci AI