清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Electric vehicle charging and discharging scheduling strategy based on dynamic electricity price

计算机科学 电动汽车 动态定价 调度(生产过程) 汽车工程 数学优化 功率(物理) 电气工程 微观经济学 数学 量子力学 物理 工程类 经济
作者
Lina Ren,Mingming Yuan,Xiaohong Jiao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106320-106320 被引量:22
标识
DOI:10.1016/j.engappai.2023.106320
摘要

The rapid growth in the number of electric vehicles (EVs) has significantly increased the demand for electricity for residents. In addition, because the charging time of EVs highly coincides with the peak period of user electricity consumption, the disorderly charging of EVs will lead to the overload of the power grid transformer. Traditional control methods lack certain robustness and do not fully consider the uncertainty of EVs. As a result, the V2G participation rate of electric vehicles cannot be determined, and the control reliability is low. To solve the above problems, this paper designs a reinforcement learning framework of Long Short-Term Memory network and Improved Linear programming algorithm (LSTM-ILP) to control the V2G of EVs.This paper comprehensively considers the overall electric vehicle charging demand, discharge potential, large grid electricity price, aggregator, and users’ interests demands. Firstly, aiming to minimize the charging and discharging fee of EVs and the load peak-to-valley difference of the power grid, a dynamic electricity price based on Long Short-Term Memory neural network (LSTM) is established. Then, the improved linear programming algorithm (ILP) is used to solve the charging and discharging optimization problem of EV, and the results are fed back to the input of the next iterative update of the LSTM, and finally, the optimal electricity price and EV charging and discharging schedule are achieved. The simulation results show that the LSTM-ILP framework can not only reduce the charging fee of electric vehicles, but also achieve the Peak and valley trimming of the grid load. Charging costs for EV users were reduced by 42.1% compared with unordered charging, and by 22% percent compared with orderly charging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
SciGPT应助星星采纳,获得10
37秒前
星辰大海应助科研通管家采纳,获得10
51秒前
牛八先生完成签到,获得积分10
1分钟前
方白秋完成签到,获得积分10
1分钟前
2分钟前
我是老大应助白华苍松采纳,获得10
2分钟前
汤圆儿完成签到 ,获得积分10
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
科目三应助fddd采纳,获得10
3分钟前
3分钟前
3分钟前
fddd发布了新的文献求助10
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
陶醉笑柳完成签到,获得积分20
4分钟前
陶醉笑柳发布了新的文献求助10
4分钟前
Orange应助陶醉笑柳采纳,获得10
4分钟前
紫熊发布了新的文献求助10
4分钟前
科研通AI5应助一木采纳,获得20
4分钟前
4分钟前
4分钟前
一木发布了新的文献求助20
4分钟前
我是老大应助fddd采纳,获得10
5分钟前
科研通AI2S应助白华苍松采纳,获得10
5分钟前
5分钟前
YMY发布了新的文献求助10
5分钟前
北国雪未消完成签到 ,获得积分10
5分钟前
qmhx完成签到,获得积分10
5分钟前
YMY完成签到,获得积分10
5分钟前
qmhx发布了新的文献求助10
5分钟前
紫熊发布了新的文献求助20
5分钟前
5分钟前
lolbilli完成签到,获得积分20
6分钟前
紫熊发布了新的文献求助20
6分钟前
6分钟前
lolbilli发布了新的文献求助10
6分钟前
紫熊完成签到,获得积分10
7分钟前
紫熊发布了新的文献求助10
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539060
求助须知:如何正确求助?哪些是违规求助? 3116670
关于积分的说明 9326455
捐赠科研通 2814641
什么是DOI,文献DOI怎么找? 1546998
邀请新用户注册赠送积分活动 720679
科研通“疑难数据库(出版商)”最低求助积分说明 712178