亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Active Antinoise Fuzzy Dominance Rough Feature Selection Using Adaptive K-Nearest Neighbors

特征选择 模式识别(心理学) 人工智能 k-最近邻算法 粗集 计算机科学 稳健性(进化) 模糊逻辑 冗余(工程) 特征提取 数据挖掘 特征向量 机器学习 数学 生物化学 化学 基因 操作系统
作者
Binbin Sang,Weihua Xu,Hongmei Chen,Tianrui Li
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (11): 3944-3958 被引量:21
标识
DOI:10.1109/tfuzz.2023.3272316
摘要

Feature selection methods with antinoise performance are effective dimensionality reduction methods for classification tasks with noise. However, there are few studies on robust feature selection methods for monotonic classification tasks. The fuzzy dominance rough set (FDRS) model is a nontrivial knowledge acquisition tool, which is widely used in feature selection of monotonic classification tasks. Nonetheless, this model has been proved in practice to be generally poorly fault-tolerance, and only one noisy sample can cause huge interference in acquiring knowledge. In view of these two issues, this article first designs an adaptive $K$ -nearest neighbors strategy to calculate the density of samples. The noisy samples are identified according to their densities, and then an active antinoise FDRS model is proposed. Then, in the active antinoise fuzzy dominance rough approximation space, the class-separability is evaluated by the approximation operators of the proposed model, and the feature-redundancy is evaluated by the fuzzy ranking conditional mutual information. On this basis, a feature evaluation index is designed comprehensively considering class-separability and feature-redundancy. Finally, a feature selection algorithm is designed to select the feature subset with the highest classification performance. The experimental results show that the proposed algorithm has better robustness and classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
xixiazhiwang完成签到 ,获得积分10
14秒前
23秒前
26秒前
31秒前
35秒前
氢氧化钠Li完成签到,获得积分10
42秒前
清风朗月完成签到,获得积分10
59秒前
1分钟前
天天快乐应助月华采纳,获得10
1分钟前
1分钟前
冷艳的萝莉完成签到,获得积分10
1分钟前
1分钟前
hyyyh发布了新的文献求助10
1分钟前
1分钟前
1分钟前
青青2020发布了新的文献求助10
1分钟前
英俊的铭应助青青2020采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
顾矜应助青柠采纳,获得10
1分钟前
2分钟前
2分钟前
oo完成签到 ,获得积分10
2分钟前
Jasper应助青柠采纳,获得10
2分钟前
2分钟前
sakiko发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
serein发布了新的文献求助10
2分钟前
青柠发布了新的文献求助10
2分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502807
求助须知:如何正确求助?哪些是违规求助? 4598515
关于积分的说明 14464281
捐赠科研通 4532106
什么是DOI,文献DOI怎么找? 2483837
邀请新用户注册赠送积分活动 1467039
关于科研通互助平台的介绍 1439707