Active Antinoise Fuzzy Dominance Rough Feature Selection Using Adaptive K-Nearest Neighbors

特征选择 模式识别(心理学) 人工智能 k-最近邻算法 粗集 计算机科学 稳健性(进化) 模糊逻辑 冗余(工程) 特征提取 数据挖掘 特征向量 机器学习 数学 化学 操作系统 基因 生物化学
作者
Binbin Sang,Weihua Xu,Hongmei Chen,Tianrui Li
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (11): 3944-3958 被引量:21
标识
DOI:10.1109/tfuzz.2023.3272316
摘要

Feature selection methods with antinoise performance are effective dimensionality reduction methods for classification tasks with noise. However, there are few studies on robust feature selection methods for monotonic classification tasks. The fuzzy dominance rough set (FDRS) model is a nontrivial knowledge acquisition tool, which is widely used in feature selection of monotonic classification tasks. Nonetheless, this model has been proved in practice to be generally poorly fault-tolerance, and only one noisy sample can cause huge interference in acquiring knowledge. In view of these two issues, this article first designs an adaptive $K$ -nearest neighbors strategy to calculate the density of samples. The noisy samples are identified according to their densities, and then an active antinoise FDRS model is proposed. Then, in the active antinoise fuzzy dominance rough approximation space, the class-separability is evaluated by the approximation operators of the proposed model, and the feature-redundancy is evaluated by the fuzzy ranking conditional mutual information. On this basis, a feature evaluation index is designed comprehensively considering class-separability and feature-redundancy. Finally, a feature selection algorithm is designed to select the feature subset with the highest classification performance. The experimental results show that the proposed algorithm has better robustness and classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
fmx完成签到,获得积分10
4秒前
科研通AI2S应助雪白小丸子采纳,获得10
5秒前
辣么卄完成签到,获得积分10
5秒前
ZZZ发布了新的文献求助10
6秒前
7秒前
冷傲的太英完成签到 ,获得积分10
7秒前
嘿嘿发布了新的文献求助10
8秒前
大胆的时光完成签到 ,获得积分10
9秒前
joleisalau发布了新的文献求助10
10秒前
CHL完成签到,获得积分10
12秒前
15秒前
可爱的函函应助12121采纳,获得10
15秒前
Zzx完成签到,获得积分10
23秒前
hannuannuan完成签到 ,获得积分10
27秒前
辣么卄发布了新的文献求助10
27秒前
SciGPT应助yxf采纳,获得10
28秒前
illuminate发布了新的文献求助20
28秒前
坚强的安柏完成签到,获得积分10
28秒前
哆来咪完成签到,获得积分10
29秒前
打打应助梧桐采纳,获得10
31秒前
31秒前
潘润朗完成签到,获得积分10
31秒前
墨兮完成签到 ,获得积分10
32秒前
汉堡包应助echo采纳,获得10
33秒前
33秒前
35秒前
36秒前
夏夏完成签到 ,获得积分10
37秒前
整齐的未来完成签到 ,获得积分10
38秒前
joleisalau完成签到,获得积分10
38秒前
40秒前
科研通AI6应助YY采纳,获得10
41秒前
Hello应助YY采纳,获得10
41秒前
万能图书馆应助YY采纳,获得10
41秒前
yxf发布了新的文献求助10
41秒前
困告完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900