Active Antinoise Fuzzy Dominance Rough Feature Selection Using Adaptive K-Nearest Neighbors

特征选择 模式识别(心理学) 人工智能 k-最近邻算法 粗集 计算机科学 稳健性(进化) 模糊逻辑 冗余(工程) 特征提取 数据挖掘 特征向量 机器学习 数学 生物化学 化学 基因 操作系统
作者
Binbin Sang,Weihua Xu,Hongmei Chen,Tianrui Li
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (11): 3944-3958 被引量:12
标识
DOI:10.1109/tfuzz.2023.3272316
摘要

Feature selection methods with antinoise performance are effective dimensionality reduction methods for classification tasks with noise. However, there are few studies on robust feature selection methods for monotonic classification tasks. The fuzzy dominance rough set (FDRS) model is a nontrivial knowledge acquisition tool, which is widely used in feature selection of monotonic classification tasks. Nonetheless, this model has been proved in practice to be generally poorly fault-tolerance, and only one noisy sample can cause huge interference in acquiring knowledge. In view of these two issues, this article first designs an adaptive $K$ -nearest neighbors strategy to calculate the density of samples. The noisy samples are identified according to their densities, and then an active antinoise FDRS model is proposed. Then, in the active antinoise fuzzy dominance rough approximation space, the class-separability is evaluated by the approximation operators of the proposed model, and the feature-redundancy is evaluated by the fuzzy ranking conditional mutual information. On this basis, a feature evaluation index is designed comprehensively considering class-separability and feature-redundancy. Finally, a feature selection algorithm is designed to select the feature subset with the highest classification performance. The experimental results show that the proposed algorithm has better robustness and classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NEMO发布了新的文献求助10
刚刚
李健应助mammoth采纳,获得20
刚刚
熊boy发布了新的文献求助10
刚刚
天真思雁发布了新的文献求助10
刚刚
1秒前
情怀应助蔡蔡不菜菜采纳,获得10
1秒前
shouyu29应助MADKAI采纳,获得10
2秒前
CipherSage应助MADKAI采纳,获得10
2秒前
乐乐应助MADKAI采纳,获得10
2秒前
ChangSZ应助MADKAI采纳,获得10
2秒前
乐乐应助MADKAI采纳,获得10
2秒前
小飞七应助MADKAI采纳,获得10
2秒前
Akim应助MADKAI采纳,获得20
2秒前
科研通AI5应助MADKAI采纳,获得10
2秒前
充电宝应助MADKAI采纳,获得10
2秒前
buno应助MADKAI采纳,获得10
2秒前
2秒前
小唐完成签到 ,获得积分0
4秒前
思源应助年轻的咖啡豆采纳,获得10
4秒前
6秒前
科研通AI5应助junc采纳,获得20
6秒前
绿洲完成签到,获得积分10
7秒前
7秒前
yf_zhu发布了新的文献求助10
7秒前
正直亦旋发布了新的文献求助10
7秒前
8秒前
华仔应助招财不肥采纳,获得10
8秒前
健康的梦曼完成签到 ,获得积分10
8秒前
最最最发布了新的文献求助10
8秒前
科研是什么鬼完成签到,获得积分10
10秒前
10秒前
11秒前
欢喜素阴完成签到 ,获得积分10
12秒前
yirenli完成签到,获得积分10
12秒前
希望天下0贩的0应助DAYTOY采纳,获得10
12秒前
狮子座完成签到,获得积分10
12秒前
爆米花应助润润轩轩采纳,获得10
12秒前
14秒前
熊boy完成签到,获得积分10
14秒前
1233完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762