Fault Diagnosis of Fuel Cells by a Hybrid Deep Learning Network Fusing Characteristic Impedance

计算机科学 特征(语言学) 人工智能 断层(地质) 深度学习 卷积神经网络 模式识别(心理学) 故障检测与隔离 残差神经网络 电阻抗 人工神经网络 洪水(心理学) 工程类 地震学 电气工程 地质学 心理学 哲学 语言学 执行机构 心理治疗师
作者
Hao Yuan,Dayi Tan,Xuezhe Wei,Haifeng Dai
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:10 (1): 1482-1493 被引量:10
标识
DOI:10.1109/tte.2023.3272654
摘要

Establishing an accurate fault diagnosis system for the proton exchange membrane (PEM) fuel cell is essential for ensuring stable performance and delaying degradation. In this article, a novel fault diagnosis method fusing characteristic impedance for the PEM fuel cell based on a hybrid deep learning network by combing the residual network (ResNet) and long short-term memory (LSTM) is proposed. Specifically, the characteristic impedance that can reflect internal dynamics loss is fused as the feature input alongside other commonly vehicular measurement signals and decoded to form a feature matrix. The feature matrix is then transferred to realize 25 categories of fault detection, including different degrees of membrane drying, flooding, and air starvation. The results showed the accuracy of ResNet-LSTM can reach 99.632% with a good balance of computational burden and is higher than that of a single LSTM, ResNet, and convolutional neural network (CNN), as well as traditional machine learning (ML) methods because such the hybrid structure can make full use of feature learning capability of ResNet and the time series analysis capability of LSTM. Moreover, the proposed hybrid framework is further validated and compared under different proportions of training samples, noise levels, and input signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助udye采纳,获得10
1秒前
丘比特应助udye采纳,获得10
1秒前
今后应助udye采纳,获得10
1秒前
善学以致用应助udye采纳,获得10
1秒前
Jasper应助udye采纳,获得10
1秒前
情怀应助udye采纳,获得10
1秒前
华仔应助udye采纳,获得10
2秒前
酷波er应助udye采纳,获得10
2秒前
无花果应助udye采纳,获得10
2秒前
隐形曼青应助udye采纳,获得10
2秒前
2秒前
隐形曼青应助hhhhh采纳,获得10
2秒前
ytx发布了新的文献求助10
3秒前
外向一一发布了新的文献求助10
3秒前
与你无关完成签到,获得积分10
3秒前
辉哥完成签到,获得积分10
4秒前
领导范儿应助yi蔚采纳,获得10
4秒前
6秒前
6秒前
6秒前
7秒前
山花浪漫应助ling22采纳,获得10
7秒前
zoelir完成签到,获得积分10
7秒前
单薄的夏槐完成签到,获得积分20
7秒前
星芋啵啵完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
爆米花应助墨冉采纳,获得10
9秒前
端庄断秋发布了新的文献求助10
9秒前
9秒前
王微发布了新的文献求助10
9秒前
所所应助信步采纳,获得10
9秒前
9秒前
Yolo完成签到,获得积分10
10秒前
骆欣怡发布了新的文献求助10
10秒前
深情安青应助udye采纳,获得10
10秒前
田様应助udye采纳,获得10
10秒前
大模型应助udye采纳,获得10
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731957
求助须知:如何正确求助?哪些是违规求助? 3276317
关于积分的说明 9996422
捐赠科研通 2991854
什么是DOI,文献DOI怎么找? 1641806
邀请新用户注册赠送积分活动 780013
科研通“疑难数据库(出版商)”最低求助积分说明 748649