Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data

电池(电) 电池容量 锂(药物) 可靠性(半导体) 计算机科学 锂离子电池 学习迁移 传输(计算) 卷积神经网络 人工智能 功率(物理) 量子力学 医学 物理 内分泌学 并行计算
作者
Jiachi Yao,Te Han
出处
期刊:Energy [Elsevier BV]
卷期号:271: 127033-127033 被引量:130
标识
DOI:10.1016/j.energy.2023.127033
摘要

Accurate estimation of lithium-ion battery capacity is crucial for ensuring its safety and reliability. While data-driven modelling is a common approach for capacity estimation, obtaining cycling data during charging/discharging processes can be challenging. Collecting cycling data under various charging/discharging protocols is often unrealistic, and the collected data can be fragmented due to the random nature of working conditions in practice. To address these issues, we propose a deep transfer learning method that uses partial segments of charging/discharging data for battery capacity estimation. The proposed method utilizes capacity increment features of partial charging/discharging segments that is designed to satisfy practical scenarios. A deep transfer convolutional neural network (DTCNN) is trained with both source and target data, and a fine-tuning strategy is employed to effectively eliminate distribution discrepancies between different battery types or charging/discharging protocols, leading the improved estimation accuracy. Experimental results demonstrate that the proposed method accurately estimates the lithium-ion battery capacity, with values of RMSE, MAPE, and MD-MAPE of only 0.0220, 0.0247, and 0.0194, respectively, when using partial segments. These results highlight the promising prospects of the proposed method for lithium-ion battery capacity estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
正经大善人完成签到,获得积分10
4秒前
苯二氮卓关注了科研通微信公众号
5秒前
冯冯完成签到,获得积分10
5秒前
田様应助小李采纳,获得10
5秒前
独特觅翠发布了新的文献求助10
7秒前
八二力完成签到 ,获得积分10
9秒前
司徒涟妖完成签到,获得积分10
9秒前
9秒前
SYLH应助annie2D采纳,获得10
11秒前
11秒前
乐乐应助清脆寻梅采纳,获得10
12秒前
wangDj发布了新的文献求助10
12秒前
健康的友琴完成签到,获得积分10
13秒前
14秒前
吉衣人青完成签到,获得积分10
14秒前
14秒前
独特觅翠完成签到,获得积分10
14秒前
16秒前
17秒前
17835152738完成签到,获得积分10
17秒前
18秒前
斯文千柳完成签到,获得积分10
18秒前
KLED发布了新的文献求助10
20秒前
貔貅发布了新的文献求助20
21秒前
哭泣觅儿完成签到,获得积分10
21秒前
22秒前
annie2D完成签到,获得积分10
22秒前
彭于晏应助岑忘幽采纳,获得10
23秒前
珈小羽完成签到,获得积分10
23秒前
24秒前
HOLLOW完成签到,获得积分10
24秒前
JIA完成签到,获得积分10
26秒前
nini完成签到,获得积分10
26秒前
科研通AI5应助清脆金鱼采纳,获得10
26秒前
科研通AI5应助硕小牛采纳,获得10
27秒前
27秒前
隐形曼青应助疯狂野猪采纳,获得10
28秒前
曾年珍发布了新的文献求助10
28秒前
汉堡包应助600am采纳,获得10
30秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726489
求助须知:如何正确求助?哪些是违规求助? 3271494
关于积分的说明 9972336
捐赠科研通 2986934
什么是DOI,文献DOI怎么找? 1638552
邀请新用户注册赠送积分活动 778157
科研通“疑难数据库(出版商)”最低求助积分说明 747474