Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data

电池(电) 电池容量 锂(药物) 可靠性(半导体) 计算机科学 锂离子电池 学习迁移 传输(计算) 卷积神经网络 人工智能 功率(物理) 量子力学 医学 物理 内分泌学 并行计算
作者
Jiachi Yao,Te Han
出处
期刊:Energy [Elsevier BV]
卷期号:271: 127033-127033 被引量:130
标识
DOI:10.1016/j.energy.2023.127033
摘要

Accurate estimation of lithium-ion battery capacity is crucial for ensuring its safety and reliability. While data-driven modelling is a common approach for capacity estimation, obtaining cycling data during charging/discharging processes can be challenging. Collecting cycling data under various charging/discharging protocols is often unrealistic, and the collected data can be fragmented due to the random nature of working conditions in practice. To address these issues, we propose a deep transfer learning method that uses partial segments of charging/discharging data for battery capacity estimation. The proposed method utilizes capacity increment features of partial charging/discharging segments that is designed to satisfy practical scenarios. A deep transfer convolutional neural network (DTCNN) is trained with both source and target data, and a fine-tuning strategy is employed to effectively eliminate distribution discrepancies between different battery types or charging/discharging protocols, leading the improved estimation accuracy. Experimental results demonstrate that the proposed method accurately estimates the lithium-ion battery capacity, with values of RMSE, MAPE, and MD-MAPE of only 0.0220, 0.0247, and 0.0194, respectively, when using partial segments. These results highlight the promising prospects of the proposed method for lithium-ion battery capacity estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助ZXD采纳,获得10
刚刚
难过的梦松完成签到,获得积分10
1秒前
充电宝应助潇洒的怜阳采纳,获得10
2秒前
lab完成签到,获得积分10
3秒前
3秒前
苏苏发布了新的文献求助10
3秒前
皮崇知发布了新的文献求助10
4秒前
5秒前
5秒前
生椰拿铁发布了新的文献求助10
6秒前
6秒前
小蘑菇应助sunshine采纳,获得10
6秒前
所所应助Rita采纳,获得10
7秒前
化学发布了新的文献求助10
9秒前
劳永杰发布了新的文献求助10
9秒前
热心市民小红花应助李锐采纳,获得10
10秒前
Owen应助李锐采纳,获得10
10秒前
爆米花应助李锐采纳,获得10
10秒前
乐乐应助李锐采纳,获得10
10秒前
传奇3应助李锐采纳,获得10
10秒前
彭于晏应助李锐采纳,获得10
10秒前
丘比特应助李锐采纳,获得10
11秒前
田様应助李锐采纳,获得10
11秒前
Hello应助李锐采纳,获得10
11秒前
科研通AI2S应助李锐采纳,获得10
11秒前
11秒前
guangshuang发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
15秒前
归尘发布了新的文献求助50
16秒前
呱呱呱呱呱呱完成签到 ,获得积分10
16秒前
16秒前
cc完成签到,获得积分10
18秒前
科研通AI2S应助susu采纳,获得10
20秒前
22秒前
万能图书馆应助Yang采纳,获得10
25秒前
25秒前
26秒前
充电宝应助acuter采纳,获得10
26秒前
ysx完成签到,获得积分10
27秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824