Interpretable machine learning-based approach for customer segmentation for new product development from online product reviews

新产品开发 产品(数学) 计算机科学 心理学 分割 聚类分析 市场细分 人工智能 数据科学 数据挖掘 机器学习 业务 营销 数学 几何学
作者
Junegak Joung,Harrison Kim
出处
期刊:International Journal of Information Management [Elsevier]
卷期号:70: 102641-102641 被引量:90
标识
DOI:10.1016/j.ijinfomgt.2023.102641
摘要

For new product development, previous segmentation methods based on demographic, psychographic, and purchase behavior information cannot identify a group of customers with unsatisfied needs. Moreover, segmentation is limited to sales promotions in marketing. Although needs-based segmentation considering customer sentiments on product features can be conducted to develop a new product concept, it cannot identify commonalities among customers owing to their diverse preferences. Therefore, this paper proposes an interpretable machine learning-based approach for customer segmentation for new product development based on the importance of product features from online product reviews. The technical challenges of determining the importance of product features in each review are identifying and interpreting the nonlinear relations between satisfaction with product features and overall customer satisfaction. In this study, interpretable machine learning is used to identify these nonlinear relations with high performance and transparency. A case study on a wearable device is conducted to validate the proposed approach. Customer segmentation using the proposed approach based on importance is compared with that employing a previous approach based on sentiments. The results show that the proposed approach presents a higher clustering performance than the previous approach and offers opportunities to identify new product concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨沛发布了新的文献求助10
刚刚
刚刚
zhangxq发布了新的文献求助10
刚刚
研友_VZG7GZ应助冰苏打采纳,获得10
1秒前
ZL发布了新的文献求助10
1秒前
liurencun发布了新的文献求助10
1秒前
1秒前
1秒前
electromx发布了新的文献求助20
2秒前
高贵焦发布了新的文献求助10
2秒前
充电宝应助SYS采纳,获得10
2秒前
昼夜本色发布了新的文献求助10
2秒前
目光之澄发布了新的文献求助10
2秒前
2秒前
xiliii发布了新的文献求助10
2秒前
3秒前
yang666完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
大模型应助maybe豪采纳,获得10
4秒前
华仔应助风清扬采纳,获得10
4秒前
as完成签到,获得积分10
4秒前
打打应助kaiqiang采纳,获得10
5秒前
黄诺雪发布了新的文献求助10
5秒前
5秒前
lvlv发布了新的文献求助10
5秒前
5秒前
moxin发布了新的文献求助10
5秒前
5秒前
善学以致用应助Cheney采纳,获得10
6秒前
希望天下0贩的0应助陈彪采纳,获得10
6秒前
6秒前
6秒前
biubiu完成签到,获得积分10
6秒前
6秒前
7秒前
123发布了新的文献求助10
7秒前
wu完成签到 ,获得积分10
8秒前
整齐碧玉发布了新的文献求助10
8秒前
hia发布了新的文献求助20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807