Interpretable machine learning-based approach for customer segmentation for new product development from online product reviews

新产品开发 产品(数学) 计算机科学 心理学 分割 聚类分析 市场细分 人工智能 数据科学 数据挖掘 机器学习 业务 营销 数学 几何学
作者
Junegak Joung,Harrison Kim
出处
期刊:International Journal of Information Management [Elsevier]
卷期号:70: 102641-102641 被引量:90
标识
DOI:10.1016/j.ijinfomgt.2023.102641
摘要

For new product development, previous segmentation methods based on demographic, psychographic, and purchase behavior information cannot identify a group of customers with unsatisfied needs. Moreover, segmentation is limited to sales promotions in marketing. Although needs-based segmentation considering customer sentiments on product features can be conducted to develop a new product concept, it cannot identify commonalities among customers owing to their diverse preferences. Therefore, this paper proposes an interpretable machine learning-based approach for customer segmentation for new product development based on the importance of product features from online product reviews. The technical challenges of determining the importance of product features in each review are identifying and interpreting the nonlinear relations between satisfaction with product features and overall customer satisfaction. In this study, interpretable machine learning is used to identify these nonlinear relations with high performance and transparency. A case study on a wearable device is conducted to validate the proposed approach. Customer segmentation using the proposed approach based on importance is compared with that employing a previous approach based on sentiments. The results show that the proposed approach presents a higher clustering performance than the previous approach and offers opportunities to identify new product concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
王明磊完成签到 ,获得积分10
2秒前
领导范儿应助别说话采纳,获得10
2秒前
3秒前
25上岸完成签到,获得积分10
3秒前
元谷雪发布了新的文献求助10
4秒前
4秒前
王松桐完成签到,获得积分10
4秒前
Fliu完成签到,获得积分10
5秒前
5秒前
5秒前
77发布了新的文献求助10
5秒前
Nin完成签到,获得积分10
5秒前
ZZ发布了新的文献求助10
5秒前
zy发布了新的文献求助10
6秒前
只强完成签到,获得积分10
6秒前
研友_VZG7GZ应助keke采纳,获得10
6秒前
爱吃果冻发布了新的文献求助10
6秒前
7秒前
Orange应助梅雨季来信采纳,获得10
7秒前
元神发布了新的文献求助10
7秒前
科勒基侈发布了新的文献求助10
7秒前
9秒前
jewel9发布了新的文献求助10
9秒前
南桥发布了新的文献求助10
10秒前
嘞是举仔应助无辜从阳采纳,获得30
10秒前
不明完成签到 ,获得积分10
11秒前
凡凡发布了新的文献求助10
11秒前
12秒前
小白完成签到,获得积分10
12秒前
14秒前
元谷雪发布了新的文献求助10
15秒前
香蕉觅云应助77采纳,获得10
16秒前
赘婿应助阿正嗖啪采纳,获得10
16秒前
16秒前
慕青应助28551采纳,获得10
17秒前
CipherSage应助俏皮的吐司采纳,获得10
17秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360