吞吐量
催化作用
石墨烯
计算
电化学
还原(数学)
Atom(片上系统)
氮原子
化学
机制(生物学)
计算机科学
高通量筛选
生物系统
纳米技术
生化工程
材料科学
物理
数学
算法
电极
量子力学
物理化学
并行计算
工程类
无线
生物
几何学
电信
生物化学
有机化学
群(周期表)
作者
Xiaoyun Lin,Yongtao Wang,Xin Chang,Shiyu Zhen,Zhi‐Jian Zhao,Jinlong Gong
标识
DOI:10.1002/anie.202300122
摘要
Developing easily accessible descriptors is crucial but challenging to rationally design single-atom catalysts (SACs). This paper describes a simple and interpretable activity descriptor, which is easily obtained from the atomic databases. The defined descriptor proves to accelerate high-throughput screening of more than 700 graphene-based SACs without computations, universal for 3-5d transition metals and C/N/P/B/O-based coordination environments. Meanwhile, the analytical formula of this descriptor reveals the structure-activity relationship at the molecular orbital level. Using electrochemical nitrogen reduction as an example, this descriptor's guidance role has been experimentally validated by 13 previous reports as well as our synthesized 4 SACs. Orderly combining machine learning with physical insights, this work provides a new generalized strategy for low-cost high-throughput screening while comprehensive understanding the structure-mechanism-activity relationship.
科研通智能强力驱动
Strongly Powered by AbleSci AI