Deep Learning-Based Classification of Subtypes of Primary Angle-Closure Disease With Anterior Segment Optical Coherence Tomography

光学相干层析成像 人工智能 青光眼 分类器(UML) 医学 开角型青光眼 眼科 试验装置 训练集 计算机科学 模式识别(心理学) 验光服务
作者
Yadollah Eslami,Zahra Mousavi Kouzahkanan,Zahra Farzinvash,Mona Safizadeh,Reza Zarei,Ghasem Fakhraie,Zakieh Vahedian,Tahereh Mahmoudi,Kaveh Fadakar,Alireza Beikmarzehei,Seyed Mehdi Tabatabaei
出处
期刊:Journal of Glaucoma [Ovid Technologies (Wolters Kluwer)]
卷期号:32 (6): 540-547 被引量:5
标识
DOI:10.1097/ijg.0000000000002194
摘要

We developed a deep learning-based classifier that can discriminate primary angle closure suspects (PACS), primary angle closure (PAC)/primary angle closure glaucoma (PACG), and also control eyes with open angle with acceptable accuracy.To develop a deep learning-based classifier for differentiating subtypes of primary angle closure disease, including PACS and PAC/PACG, and also normal control eyes.Anterior segment optical coherence tomography images were used for analysis with 5 different networks including MnasNet, MobileNet, ResNet18, ResNet50, and EfficientNet. The data set was split with randomization performed at the patient level into a training plus validation set (85%), and a test data set (15%). Then 4-fold cross-validation was used to train the model. In each mentioned architecture, the networks were trained with original and cropped images. Also, the analyses were carried out for single images and images grouped on the patient level (case-based). Then majority voting was applied to the determination of the final prediction.A total of 1616 images of normal eyes (87 eyes), 1055 images of PACS (66 eyes), and 1076 images of PAC/PACG (66 eyes) eyes were included in the analysis. The mean ± SD age was 51.76 ± 15.15 years and 48.3% were males. MobileNet had the best performance in the model, in which both original and cropped images were used. The accuracy of MobileNet for detecting normal, PACS, and PAC/PACG eyes was 0.99 ± 0.00, 0.77 ± 0.02, and 0.77 ± 0.03, respectively. By running MobileNet in a case-based classification approach, the accuracy improved and reached 0.95 ± 0.03, 0.83 ± 0.06, and 0.81 ± 0.05, respectively. For detecting the open angle, PACS, and PAC/PACG, the MobileNet classifier achieved an area under the curve of 1, 0.906, and 0.872, respectively, on the test data set.The MobileNet-based classifier can detect normal, PACS, and PAC/PACG eyes with acceptable accuracy based on anterior segment optical coherence tomography images.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丢丢发布了新的文献求助10
2秒前
英姑应助111采纳,获得10
4秒前
小水牛发布了新的文献求助10
4秒前
666完成签到,获得积分10
6秒前
7秒前
所所应助逸晨采纳,获得10
8秒前
归于水云身完成签到 ,获得积分10
9秒前
慕青应助月亮与六便士采纳,获得10
10秒前
bkagyin应助丢丢采纳,获得10
12秒前
15秒前
15秒前
18秒前
18秒前
牙医小蓓发布了新的文献求助10
20秒前
月月发布了新的文献求助10
21秒前
22秒前
聪明念真发布了新的文献求助10
22秒前
英俊的铭应助轻松焱采纳,获得10
24秒前
整齐怡发布了新的文献求助10
28秒前
31秒前
完美世界应助wangbw采纳,获得10
33秒前
平常的玲发布了新的文献求助10
33秒前
34秒前
35秒前
jitianxing发布了新的文献求助10
38秒前
39秒前
李健应助feifei采纳,获得10
40秒前
你的微笑我舍不得完成签到,获得积分10
40秒前
Jiping Ni发布了新的文献求助10
42秒前
CodeCraft应助俭朴映阳采纳,获得10
42秒前
42秒前
科研通AI2S应助甜蜜水蜜桃采纳,获得10
44秒前
Muccio完成签到 ,获得积分10
44秒前
111发布了新的文献求助10
46秒前
qqqq完成签到,获得积分10
46秒前
47秒前
科研通AI2S应助hhhhhhw采纳,获得10
48秒前
所所应助啦啦咔嘞采纳,获得10
49秒前
49秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380932
求助须知:如何正确求助?哪些是违规求助? 2995965
关于积分的说明 8766492
捐赠科研通 2681072
什么是DOI,文献DOI怎么找? 1468318
科研通“疑难数据库(出版商)”最低求助积分说明 678977
邀请新用户注册赠送积分活动 670988